Impacts of Pollution: Leaking Septic Tanks on Groundwater Quality in Owerri Southeastern, Nigeria

Author(s):  
V. N. Nwugha ◽  
P. I. Okeke ◽  
U. R. Emeronye
2016 ◽  
Vol 20 (2) ◽  
Author(s):  
Sudarmadji Sudarmadji

Groundwater is the main domestic water supply of the population of the Yogyakarta Special Region, both in the urban and as well as in the rural area due to its quantity and quality advantages. The rapid population growth has caused an increase of groundwater demand, consequently it is facing some problems to the sustainability of groundwater supply. Lowering of groundwater level has been observed in some places, as well as the degradation of groundwater quality. Earthquake which stroke Yogyakarta on 27 May 2006, damaged buildings and other infrastructures in the area, including roads and bridges. It might also damage the underground structures such as septic tanks, and pipes underneath the earth surface. It might cause cracking of the geologic structures. Furthermore, the damage of underneath infrastructures might create groundwater quality changes in the area. Some complains of local community on lowering and increasing groundwater level and groundwater quality changes were noted. Field observation and investigation were conducted, including collection of groundwater samples close to (the) pollution sources. Laboratory analyses indicated that some parameters increased to exceed the drinking water quality standards. The high content of Coli form bacteria possibly was caused by contamination of nearby septic tanks or other pollution sources to the observed groundwater in the dug well.


Author(s):  
Filipe da Silva Peixoto ◽  
Itabaraci Nazareno Cavalcante

ABSTRACT This research aimed to investigate the relation between sanitary situation and groundwater quality, using the concentration of nitrogenous compounds. The aquifer studied is unconfined and situated in the periurban zone of Fortaleza (NE Brazil). Through the Geographic Information System (GIS), a relational database was created using data from the IBGE demographic census (2011), to analyze numbers of households linked to septic tanks or rudimentary cesspit. The groundwater quality was evaluated based on nitrogen compounds (N-NH3 +; NO2 -; N-NO3 -), pH, and total dissolved solids (TDS). The highest concentrations of nitrates are found in areas with a higher density of septic tanks and rudimentary cesspit. Furthermore, nitrate was more present in water table above 6.6 m, mainly in the interfluvial zones, which have a high oxidation potential. The results contribute to the loss of contamination, based on the number of households with septic tanks and rudimentary cesspit, in unconfined aquifers, which were more vulnerable to contamination, mainly in peripheric expansions areas in the cities, where the deficit in sewage services tends to be high.


2020 ◽  
pp. 73-89
Author(s):  
Kofoworola Olatunde ◽  
Modupe Sarumi ◽  
Sadiq Abdulsalaam ◽  
Babatunde Bada ◽  
Funmilola Oyebanji

Groundwater forms a very important part of the water supply chain and its quality can be affected by improperly constructed septic tanks used by homeowners in peri-urban locations such as Abeokuta in recent times. Sixty groundwater samples collected from hand-dug wells ≤15m from septic tanks were analysed for physicochemical and bacteriological parameters using standard procedures. Results were integrated with multivariate and hydrogeochemical analyses to assess the effect improperly built septic tanks have on groundwater quality around the Federal University of Agriculture, Abeokuta. The range of values for the measured parameters include: pH (6.26 – 8.66), EC (83 – 1035 μS cm-1), TDS (42 – 621 mg L-1), Mg2+ (2 – 60 mg L-1), NO3- (5.09 – 17 mg L-1), Fe (-.04 – 5.32 mg L-1), BOD (0.1 – 13.2) and E. Coli (ND – 41×10 cfu mL-1). The abundance of major ions are in the order Ca2+˃Mg2+˃K+˃ Na+ and Cl- ˃SO42- >HCO3- >NO3- ˃PO42-. The piper trilinear plot shows that the dominant hydrochemical facies in the study area is the Ca2+–Cl- type. A correlation analysis and a principal component analysis both reflect intrusions from biological wastes such as surrounding septic tanks or municipal waste disposals as well as dissolutions from basal rocks. The possibility of infiltration from sewage into groundwater is confirmed by the number of samples with high BOD, NO3-, and E. coli concentrations. Contamination of groundwater with sewage exposes the populace to acute excreta-related illness. This therefore calls for stringent monitoring and management measures to be put in place by relevant regulatory authorities to safeguard the human health and environment within the study area.


Author(s):  
I. M. Onwe ◽  
B. E. B. Akudinobi ◽  
C. J. Chizoba ◽  
K. A. Ifeanyichukwu

Hydrochemical characterization of groundwater quality in Nkalagu District, southeastern Nigeria was carried to determine the main factors controlling the chemistry of groundwater and its suitability for drinking and irrigation purposes. Sixty (60) groundwater samples collected from boreholes and hand-dug wells in different parts of the area were analyzed for a range of physiochemical parameters and heavy metal constituents. The results show that concentration of the major ions were in the order Cl->HCO3->SO42->NO3- and Na>Ca2+>Mg2+>K+. The groundwater samples are slightly acidic with pH of 5.28 to 8.04; moderately hard with TH of 112.88 to 467.78 mg/l. The district is mainly controlled by carbonate and silicate mineral weathering based on the available result. Three main flow regimes were identified with Q-mode cluster analysis. Based on the WQIanalysis results, the groundwater quality in the district was classified, generally as ‘poor’ to ‘excellent’ for drinking purpose. Groundwater quality for drinking purpose were noted to deteriorates as one move from west towards the east of the district, while the north and south part pf the study area indicated the best quality in the district. Groundwater quality for irrigation purpose showed excellent quality based on the United States Salinity Laboratory and Wilcox diagrams. For future use of groundwater resource in the district we recommend implementation rules and guidelines in the area to enhance health and preserve groundwater sources in the district.


Sign in / Sign up

Export Citation Format

Share Document