Theoretical Study of a New Oxazolidine -5- One Derivative as a Corrosion Inhibitor for Carbon Steel Surface

2021 ◽  
pp. 80-88
Author(s):  
Rehab Majed Kubba ◽  
Nada Mohammed Al-Joborry
2021 ◽  
pp. 1396-1403
Author(s):  
Rehab Majed Kubba ◽  
Nada Mohammed Al-Joborry

A newly derivative of oxazolidin-5- one namely [2-(2-biphenyl-4-yl-imidazo [1,2-a] pyridine-3-yl)-3-(4-nitro-phenyl)-oxazolidin-5-one (BIPNO5)] was examined as an corrosion inhibitor for carbon steel surface. Quantum mechanical method of Density Functional Theory (DFT) with (B3LYP (6-311++G (2d, 2p)) level of theory was used to calculate the minimize structure, physical properties and inhibition chemical parameters, in vacuum and two solvents (DMSO and H2O), all at equilibrium geometry. The results indicated that the new derivative could adsorb on the surface of carbon steel through the heteroatom, showing that the new inhibitor has good corrosion inhibition performance.


2019 ◽  
Vol 13 (1) ◽  
pp. 4434-4448
Author(s):  
R. Nanthini ◽  
M. I. Mutalib

This corrosion study assessed the inhibition performance of carbon steel in 1 M of hydrochloric acid (HCl) using Good’s buffer ionic liquids (GBIL) namely 1-Butyl-3-methylimidazolium 2-(N-Morpholino) propane, [BMIM][MOPS] using electrochemical impedance, potentiodynamic polarization, and weight loss (gravimetric) measurements. GBIL are synthesized by the combination of Good's buffer as anion and various organic bases as the cation. The gravimetric measurements exhibit higher reduction in weight for carbon steel exposed to the acidic environment in the absence of corrosion inhibitor (CI) as compared to carbon steel immersed in the presence of inhibitor molecule. Potentiodynamic polarization study indicates that the synthesized inhibitor acted as a mixed type inhibitor. The inhibition efficiency increases with increase in the concentration of [BMIM][MOPS]. Corrosion protection efficiency ranging from 88% to 90% was featured at 800 ppm of CI in the HCl medium. The adsorption of [BMIM][MOPS] on the carbon steel surface was described by the Langmuir's adsorption isotherm. The scanning electron micrographs inspected the morphology of the carbon steel surface exposed to the solution without and with the presence of inhibitor. The result showed that compound effectively suppressed corrosion by the appearance of an improved surface structure of carbon steel with increasing concentration of [BMIM][MOPS].


2019 ◽  
Vol 1189 ◽  
pp. 131-145 ◽  
Author(s):  
Eduardo Daniel Tecuapa-Flores ◽  
David Turcio-Ortega ◽  
José Guadalupe Hernandez ◽  
Carlos Alberto Huerta-Aguilar ◽  
Pandiyan Thangarasu

Sign in / Sign up

Export Citation Format

Share Document