Determination of Uniformly Loaded Simply Supported Rectangular Plates with Lifting Corners Using Strip Moment Ratio (SMR) Method

2021 ◽  
pp. 155-164
Author(s):  
M. E. Ephraim ◽  
S. T. Orumu
1961 ◽  
Vol 83 (4) ◽  
pp. 434-439 ◽  
Author(s):  
Eric E. Ungar

A simple semigraphical method for calculating the natural frequencies of two-plate systems is developed, a two-plate system being one made up of two rectangular plates simply supported at all edges and joined at a common edge. Charts for easy determination of the afore-mentioned natural frequencies are developed. One of these gives, as a by-product, the natural frequencies of rectangular plates (of any dimensions) having one edge clamped, the remaining three simply supported. It is demonstrated that the higher natural frequencies of two-plate systems are very nearly equal to those of the individual component plates. Equations for the mode shapes are also given.


2017 ◽  
Vol 8 (4) ◽  
pp. 468-483
Author(s):  
Asad Shukri Albostami ◽  
Zhangjian Wu ◽  
Zhenmin Zou

Purpose An analytical investigation has been carried out for a simply supported rectangular plate with two different loading conditions by using 3D state space approach (SSA). Also, the accurate location of the neutral plane (N.P.) through the thickness of the plate can be identified: the N.P. is shifted away from the middle plane according to the loading condition. The paper aims to discuss these issues. Design/methodology/approach SSA and finite element method are used for the determination of structural behaviour of simply supported orthotropic composite plates under different types of loading. The numerical results from a finite element model developed in ABAQUS. Findings The effect of the plate thickness on displacements and stresses is described quantitatively. It is found that the N.P. of the plate, identified according to the values of the in-plane stresses through the thickness direction, is shifted away from the middle plane. Further investigation shows that the position of the N.P. is loading dependant. Originality/value This paper describe the effect of the plate thickness on displacements and stresses quantitatively by using an exact solution called SSA. Also, it is found that the N.P. of the plate, identified according to the values of the in-plane stresses through the thickness direction, is shifted away from the middle plane. Further investigation shows that the position of the N.P. is loading dependant.


1966 ◽  
Vol 17 (4) ◽  
pp. 371-394 ◽  
Author(s):  
J. Djubek

SummaryThe paper presents a solution of the non-linear problem of the deformation of slender rectangular plates which are stiffened along their edges by elastically compressible stiffeners flexible in the plane of the plate. The webplate is assumed to be simply-supported along its contour. Numerical results showing the effect of flexural and normal rigidity of stiffeners are given for a square webplate loaded by shear and compression.


1978 ◽  
Vol 5 (1) ◽  
pp. 58-69 ◽  
Author(s):  
G. G. Kulkarni ◽  
S. F. Ng

Forced vibration analysis of two dimensional bridge deck structures involves complex mathematical procedures and therefore analysis is often based on beam idealization of equivalent plates. This simplification yields close agreement only for long span bridges where plate action is relatively insignificant. However, such a concept of beam idealization cannot be successfully utilized in the case of short span bridges where plate action is predominant and where the determination of the distribution of dynamic deflections and amplification factors at critical sections of such plates is of prime concern. The principal objective of the present investigation is the forced vibration analysis of longitudinally stiffened, simply supported orthotropic bridge decks utilizing a new concept of interconnected beam idealization. The theoretical analysis deals with determination of amplification factors and dynamic deflections along critical sections of the plate treated as a series of interconnected beams. The aspect ratios of the plates under investigation as series of interconnected beams are designed to cover a wide range of plate to beam transition. The theoretical analysis is supplemented by an extensive experimental programme.In conclusion, it is seen that this concept of interconnected beam idealization not only takes into account the plate action of the deck structure but also reduces greatly the complexity of mathematical formulation. A good comparison between the theoretical and the experimental results indicates that this concept can be used to advantage for analysis and, within certain limitations, for design purposes.


2013 ◽  
Vol 6 (6) ◽  
pp. 903-932
Author(s):  
A. P. Santos ◽  
M. A. Ferreira ◽  
R. C. Carvalho ◽  
L. M. Pinheiro

The structural designs of floors formed by hollow core slabs usually consider these as simply-supported slabs. In recent years there have been project changes and hollow core slabs with continuity are widely used. The objective of this study is to suggest a way to calculate the reinforcement bars to be used in tests with continuity provided by a structural topping. Thus, this paper presents a method based on the maximum positive resistance moment and maximum shear strength of a hollow core slab. The method is applied to a test in hollow core slab specimens which have the following dimensions: 2 m width, 6 m long, and 21 cm high. The results indicated that the method was satisfactory to the performed test, and can therefore be applied to the other test configurations or even designs.


2007 ◽  
Vol 34 (3) ◽  
pp. 221-248 ◽  
Author(s):  
Yos Sompornjaroensuk ◽  
Kraiwood Kiattikomol

The paper deals with the application of dual-series equations to the problem of rectangular plates having at least two parallel simply supported edges and a partial internal line support located at the centre where the length of internal line support can be varied symmetrically, loaded with a uniformly distributed load. By choosing the proper finite Hankel transform, the dual-series equations can be reduced to the form of a Fredholm integral equation which can be solved conveniently by using standard techniques. The solutions of integral equation and the deformations for each case of the plates are given and discussed in details.


Sign in / Sign up

Export Citation Format

Share Document