scholarly journals Seasonal Variation in Photosynthetically Active Radiation Interception and Radiation Use Efficiency in Green Gram [Vigna radiata (L.)Wilczek] in Lower Gangetic Plain of India

Author(s):  
Shrabani Basu ◽  
Pramiti K. Chakraborty ◽  
Rajib Nath

Aim: The present study was conducted for identifying sowing windows and cultivars of green gram in spring – summer and rainy seasons depending on light interception pattern and photo synthetically active radiation use efficiency (PARUE) in the lower Gangetic Plains of Eastern India. Methodology: Five green gram varieties (V1, V2, V3, V4 and V5) were sown on four dates (D1, D2, D3 and D4) in the spring –summer season starting from 15th February and on three dates (D1, D2 and D3) in the rainy season, starting from 20th August at interval of 10 days. Cumulative intercepted PAR (CIPAR), PARUE for above ground biomass and green gram seed and the seed yield were measured. The experiments were conducted under strip –plot design. Results: Results showed that CIPAR increased gradually in both the seasons under different dates of sowing. The mean PARUE for above ground biomass were 3.97, 4.58, 3.18 and 2.64 gMJ-1 for D1, D2, D3 and D4 sowings during spring – summer season. In rainy season the same was declined from 8.67 to 3.73 g MJ-1 with the delay in sowing. Maximum seed yield was obtained under D2 and V3 in the spring –summer and under D1 and V5 in the rainy season. The mean PARUE for seed yield were 0.65 and 0.64 g MJ-1 and 0.40 and 0.42 g MJ-1 in the spring summer seasons of 2011 and 2012 respectively. In the rainy season the maximum PARUE were 0.91 and 0.55 g MJ-1 under D1 for two experimental years. Conclusion: Depending on PARUE Pant Mung – 5 and Mehashould be sown during 3rd week of February and August in this zone.

Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 351
Author(s):  
Adolfo Rosati ◽  
Damiano Marchionni ◽  
Dario Mantovani ◽  
Luigi Ponti ◽  
Franco Famiani

We quantified the photosynthetically active radiation (PAR) interception in a high-density (HD) and a super high-density (SHD) or hedgerow olive system, by measuring the PAR transmitted under the canopy along transects at increasing distance from the tree rows. Transmitted PAR was measured every minute, then cumulated over the day and the season. The frequencies of the different PAR levels occurring during the day were calculated. SHD intercepted significantly but slightly less overall PAR than HD (0.57 ± 0.002 vs. 0.62 ± 0.03 of the PAR incident above the canopy) but had a much greater spatial variability of transmitted PAR (0.21 under the tree row, up to 0.59 in the alley center), compared to HD (range: 0.34–0.43). This corresponded to greater variability in the frequencies of daily PAR values, with the more shaded positions receiving greater frequencies of low PAR values. The much lower PAR level under the tree row in SHD, compared to any position in HD, implies greater self-shading in lower-canopy layers, despite similar overall interception. Therefore, knowing overall PAR interception does not allow an understanding of differences in PAR distribution on the ground and within the canopy and their possible effects on canopy radiation use efficiency (RUE) and performance, between different architectural systems.


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
SARATHI SAHA ◽  
SAON BANERJEE ◽  
SOUMEN MONDAL ◽  
ASIS MUKHERJEE ◽  
RAJIB NATH ◽  
...  

An experiment was conducted in the Lower Gangetic Plains of West Bengal during 2017 and 2018 with three popular green gram varieties of the region (viz. Samrat, PM05 and Meha). Along with studying the variation of PAR components, a radiation use efficiency (RUE) based equation irrespective of varieties was developed and used to estimate the green gram yield for 2040-2090 period under RCP 4.5 and 8.5 scenarios. Field experimental results showed that almost 33.33 to 52.12% higher yield was recorded in 2017 in comparison to 2018. As observed through pooled experimental data of two years, PM05 produced 3 to 4% higher pod and 4 to 15% more biomass than Samrat and Meha with the highest radiation use efficiency (1.786 g MJ-1). Results also depicted that enhanced thermal condition would cause 9 to 15 days of advancement in maturity. Biomass and yield would also decrease gradually from 2040 to 2090 with an average rate of 7.60-11.70% and 10.19-14.17% respectively. The supporting literature confirms that future yield prediction under projected climate based on “radiation to biomass” conversion efficiency can be used successfully as a method to evaluate climate change impact on crop performance.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 209
Author(s):  
Yonghui Pan ◽  
Shuai Gao ◽  
Kailiu Xie ◽  
Zhifeng Lu ◽  
Xusheng Meng ◽  
...  

To reveal the physiological mechanism underlying the yield advantage of super hybrid rice compared with inbred super rice, a super hybrid rice cultivar Yliangyou 3218 (YLY) and an inbred super rice cultivar Zhendao 11 (ZD) were field grown under five nitrogen (N) fertilizer rates in 2016 and 2017. The average grain yield of YLY across nitrogen fertilizer rates was 10.1 t ha−1 in 2016 and 9.7 t ha−1 in 2017, 29.6% and 21.3% higher than that of ZD in 2016 and 2017, respectively. YLY showed higher above-ground biomass accumulation, especially growth before heading, which was mainly due to its faster green leaf area index (GLAI) formation and greater maximum GLAI (GLAImax). The daily radiation interception (RIdaily) was 15.0% higher in YLY than ZD, but the accumulated radiation interception (RIacc) before heading showed little difference between them because ZD had a longer growth duration. The radiation use efficiency (RUE) of YLY before heading was 54.7% higher than that of ZD (YLY, 2.12 g MJ−1; ZD, 1.37 g MJ−1). Our result demonstrated that the yield advantage of YLY was due to its higher above-ground biomass before heading, which was mainly achieved by its improvement in RUE rather than radiation interception.


2018 ◽  
Vol 33 (4) ◽  
pp. 579-587
Author(s):  
Denis de Pinho Sousa ◽  
Paulo Jorge Oliveira Ponte de Souza ◽  
Vivian Dielly da Silva Farias ◽  
Hildo Giuseppe Caldas Nunes ◽  
Denílson Pontes Ferreira ◽  
...  

Abstract This study aims to determine the cowpea efficiency in absorbing and using solar radiation according to different irrigation depths under the climatic conditions of the northeast of Pará State. The experiment was carried out on 2014 and 2016 in an experimental design of randomized blocks, which consisted in six blocks with four treatments, in which different irrigation depths the reproductive phase were applied, as follows: T100, T50, T25 e T0, that corresponded to 100%, 50%, 25% e 0% of the crop evapotranspiration, respectively. The absorbed photosynthetically active radiation, leaf area index (LAI), total aerial dry matter (TADM) and grain yield were measured. The extinction coefficient (k) was obtained by nonlinear regression between the fraction of absorbed PAR (fPARinter) and the LAI. The radiation use efficiency (RUE) was calculated by linear regression between the TADM and the accumulated absorbed PAR. The water deficit imposed by the treatments had a significant influence on the LAI, TADM and cowpea yields. The water deficit did not significantly influenced k – it ranged between 0.83 for T100 and 0.70 for T0. The RUE showed significant behaviors regarding the treatments with adequate water supply and treatments under water deficit, ranging from 2.23 to 1.64 g·MJ-1, respectively.


Author(s):  
M. A. Awal ◽  
M. O. Gani

Aim: Solar radiation is the unique source of energy which drives the photosynthesis of green plants for producing biomass to living being. Use efficiency of solar radiation to produce biomass has been quantified for many crops in field condition but no study is undertaken for mustard although it is an important oil seed crop in the world as well as in Bangladesh. Therefore, the present study was undertaken to evaluate the radiation-use efficiency of mustard crop. Study Design: The experiment was laid out in a Randomized Complete Block Design (RCBD) with three replicates. Place and Duration of Study: The experiment was conducted in the Crop Botany Field Laboratory, Bangladesh Agricultural University, Mymensingh during the winter season extended from November 2011 to March 2012. Methodology: Treatments comprised six mustard varieties viz. BINAsarisha-3, BINAsarisha-4, BINAsarisha-5, BINAsarisha-6, BINAsarisha-7 and BINAsarisha-8 which were grown following standard cultivation techniques to optimize the growth and development. Radiation measurements along the growing season were carried out during solar noon on some sunny days with a Radiometer connected to a 1 m long Line Quantum Sensor. Results: Mustard varieties showed wide variation in terms of plant height, branch number, leaf area index (LAI), dry matter (DM) accumulation, yield components and yield and radiation interception and use. BINAsarisha-6 showed better performance on the aforesaid traits followed by BINAsarisha-7 while lower performance was observed in BINAsarisha-3 and BINAsarisha-4. The higher seed yield (2.41 t ha-1) was obtained in the BINAsarisha-6, the variety also showed higher radiation-use efficiency, RUE (3.75 g MJ-1 PAR) whereas the lower seed yield (about 2.1 t ha-1) was observed in the BINAsarisha-3 or BINAsarisha-4, the varieties also showed the lower RUE (<3 g MJ-1 PAR) which indicate that the higher accumulation of DM in BINAsarisha-6 variety as influenced by higher utilization of solar radiation effectively constitute the seed yield. The temporal RUE showed much fluctuated pattern in all the varieties and higher RUEs were observed at the later part of the crop growth. The variety BINAsarisha-6 also showed the higher seasonal mean RUE whereas BINAsarisha-4 showed the lower. Conclusion: Mustard varieties showed wide variation in growth, yield and radiation interception and use. Higher biomass production as well as higher seed yield is associated with higher utilization of solar radiation.


2021 ◽  
Vol 22 (3) ◽  
pp. 285-294
Author(s):  
KOUSHIK BAG ◽  
K.K. BANDYOPADHYAY ◽  
V.K. SEHGAL ◽  
A. SARANGI ◽  
P. KRISHNAN

In this study, we have evaluated the effect of different tillage (conventional tillage (CT) and no tillage (NT)), residue (with crop residue mulch (R+) and without residue (R0)) and nitrogen (60, 120 and 180 kgN ha-1) interaction for radiation interception, radiation use efficiency (RUE), evapotranspiration (ET) partitioning and yield of wheat in a split-split plot design for 2017-18 and 2018-19. Results showed that Leaf Area Index (LAI), Leaf area duration (LAD), Total intercepted photosynthetically active radiation (TIPAR), Grain and Biomass yields were higher in R+ during both the years of study. With increasing Ndoses LAI, LAD, TIPAR, RUE, grain and biomass yields increased and extinction coefficient decreased significantly in both the years. Fraction intercepted photosynthetically active radiation (fIPAR) followed a similar trend with LAI. Seasonal ET was partitioned into soil evaporation (Ep) and crop transpiration (Tp) to take into account the productive transpiration effects on crop growth and yield. It was found that NT and residue could reduce Ep (6% and 5.6%) and increased Tp (2.6% and 2.4%) over CT and no mulch treatments, respectively. With higher N-dose, Ep decreased while Tp increased significantly. Thus besides higher nitrogen doses, NT and crop residue mulching could be a better strategy to harness higher radiation interception vis-a-vis higher crop productivity.


Sign in / Sign up

Export Citation Format

Share Document