Application of Compost, Lime and P Fertilizer on Selected Soil Properties and P Use Efficiency of Maize in Acidic Soil of Assosa, Western Ethiopia

2017 ◽  
Vol 18 (6) ◽  
pp. 1-14 ◽  
Author(s):  
Biruk Teshome ◽  
Tamado Tana ◽  
Nigussie Dechassa ◽  
T Singh
2019 ◽  
Vol 27 (2) ◽  
pp. 103-112
Author(s):  
Edris Shabani ◽  
Sahebali Bolandnazar ◽  
Seyed Jalal Tabatabaei

AbstractIn order to consider phosphorus (P) limitations in agriculture, research has been carried out on the methods that can improve plant growth and increase the efficiency of P use. A pot experiment was conducted to find the effects of magnetized Ca(H2PO4)2·H2O solutions as P source at concentrations 0, 5, 10, 20 and 40 mg·dm−3 and inoculation with arbuscular mycorrhizal fungi Diversispora versiformis on P use efficiency, growth and photosynthetic pigments in sweet basil. P solutions were treated with magnetic field of 110 mT at 3 dm3·min−1 volumetric flow rate. The results indicated that the growth of basil plant, the number of leaf, leaf area, harvest index and chlorophyll a and b contents significantly increased in the result of fertilization with magnetized P solutions and mycorrhizal inoculation as compared to the control. The application of magnetized P solution at 10 mg P·dm−3 and inoculation of mycorrhizal fungi increased P use efficiency by 18.9% and 23.5%, respectively. Findings of the experiment clearly showed that the use of magnetization of P fertilizer and mycorrhization potentially represent natural ways of promoting growth, P status and chlorophyll content in sweet basil.


2019 ◽  
Vol 56 (1) ◽  
pp. 48-58 ◽  
Author(s):  
Muhammad Akhtar ◽  
Wasiq Ikram ◽  
Tariq Mahmood ◽  
Sundas Yousaf ◽  
Syed M. Waqas Gillani ◽  
...  

AbstractMixing of phosphate fertilizer with farmyard manure (FYM) is a simple technique for optimizing phosphorus (P) availability and then improving the productivity of wheat (Triticum aestivum) grown in alkaline calcareous soils. Diammonium phosphate (DAP) and phosphoric acid (PA) were applied to soil at 36 mg P kg−1, either as sole or after amending 1-g P fertilizer with 2-g FYM (1:2, w/w basis). After 45-day incubation, concentration of P ions in the soil solution (Cp) and exchangeable P present in soil solid (E-value) were determined to evaluate the amount of total plant-available pool. The FYM-amended fertilizers, i.e., PA+FYM and DAP+FYM, showed higher E-values, i.e., 114 and 97 mg kg−1 soil, respectively. Similarly, PA+FYM exhibited the highest proportion of P derived from fertilizer (Pdff = 51.5%) and induced the highest P uptake by wheat seedlings (L-value = 72.1 mg kg−1). Consequently, PA+FYM and DAP+FYM treatments caused higher grain yield and P-use efficiency. The regression analysis revealed strong and positive correlation between L-value and grain yield (r = 0.86), biomass production (r = 0.84) and P-use efficiency (r = 0.87) by wheat crop. Results suggested that FYM-amended inorganic P fertilizer can be a promising technique to optimize supply of P from soil, improve efficiency of inorganic P fertilizers, and improve wheat yield in alkaline calcareous soils.


Author(s):  
N. Boukhalfa-Deraoui ◽  
L. Hanifi-Mekliche ◽  
A. Mekliche

Background: P deficiency is very common in alkaline - calcareous soil. Therefore, application of foliar-absorbed fertilizers may be an effective strategy to overcome the low bioavailability of phosphorus in soil, by improving phosphorus use efficiency and reduced nutrients loses.Methods: A field experiment was carried out in 2006-07 growing season at El-Menia (southeastern Algeria) to evaluated the effect of two foliar P (agriphos and leader-start) and three soil P (TSP P 46, Fosfactyl NP 3:22 and NPKs 8:36:13,5+15) on yield and P use efficiency of durum wheat crop Triticum durum Desf. var. Carioca and on available P and total P in soil.Result: Data showed that significant effect of soil P fertilizer on grain yield components (ears m-², grains ear-1 and the 1000 grains weight), grain P use efficiency and available P in soil. The best values were recorded by NPKs fertilizer, but no differences were observed for these parameters among foliar fertilizer sources.


2021 ◽  
Vol 262 ◽  
pp. 108054
Author(s):  
Tao Zhou ◽  
Li Wang ◽  
Xin Sun ◽  
Xiaochun Wang ◽  
Tian Pu ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 390
Author(s):  
Ramiro Recena ◽  
Ana M. García-López ◽  
Antonio Delgado

Zinc (Zn) deficiency constrains crop yield and quality, but soil factors influencing Zn availability to plants and reactions of applied Zn fertilizer are not fully understood. This work is aimed at studying Zn availability in soil and the use efficiency of Zn fertilizers by plants as affected by soil properties and particularly by soil available P. We performed a pot experiment involving four consecutive crops fertilized with Zn sulfate using 36 soils. The cumulative Zn uptake and dry matter yield in the four crops increased with increased initial diethylenetriamine pentaacetic acid extraction of Zn (DTPA-Zn) (R2 = 0.75 and R2 = 0.61; p < 0.001). The initial DTPA-Zn increased with increased Olsen P (R2 = 0.41; p < 0.001) and with increased ratio of Fe in poorly crystalline to Fe in crystalline oxides (R2 = 0.58; p < 0.001). DTPA-Zn decreased with increased cumulative Zn uptake, but not in soils with DTPA-Zn < 0.5 mg kg−1. Overall, the available Zn is more relevant in explaining Zn uptake by plants than applied Zn sulfate. However, in Zn-deficient soils, Zn fertilizer explained most of the Zn uptake by crops. Poorly crystalline Fe oxides and P availability exerted a positive role on Zn availability to plants in soil.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aung Zaw Oo ◽  
Yasuhiro Tsujimoto ◽  
Mana Mukai ◽  
Tomohiro Nishigaki ◽  
Toshiyuki Takai ◽  
...  

AbstractImproved phosphorus (P) use efficiency for crop production is needed, given the depletion of phosphorus ore deposits, and increasing ecological concerns about its excessive use. Root system architecture (RSA) is important in efficiently capturing immobile P in soils, while agronomically, localized P application near the roots is a potential approach to address this issue. However, the interaction between genetic traits of RSA and localized P application has been little understood. Near-isogenic lines (NILs) and their parent of rice (qsor1-NIL, Dro1-NIL, and IR64, with shallow, deep, and intermediate root growth angles (RGA), respectively) were grown in flooded pots after placing P near the roots at transplanting (P-dipping). The experiment identified that the P-dipping created an available P hotspot at the plant base of the soil surface layer where the qsor1-NIL had the greatest root biomass and root surface area despite no genotyipic differences in total values, whereby the qsor1-NIL had significantly greater biomass and P uptake than the other genotypes in the P-dipping. The superior surface root development of qsor1-NIL could have facilitated P uptakes from the P hotspot, implying that P-use efficiency in crop production can be further increased by combining genetic traits of RSA and localized P application.


2011 ◽  
Vol 35 (1) ◽  
pp. 171-181
Author(s):  
Edilson Carvalho Brasil ◽  
Vera Maria Carvalho Alves ◽  
Ivanildo Evódio Marriel ◽  
Gilson Villaça Exel Pitta ◽  
Janice Guedes de Carvalho

An experiment was conducted in a growth chamber to evaluate characteristics of the rhizosphere of maize genotypes contrasting in P-use efficiency, by determining length and density of root hairs, the rhizosphere pH and the functional diversity of rhizosphere bacteria. A sample of a Red Oxisol was limed and fertilized with N, K and micronutrients. In the treatment with the highest P level, 174 mg kg-1 P was added. Each experimental unit corresponded to a PVC rhizobox filled with 2.2 dm-3 soil. The experiment was completely randomized with three replications in a 5 x 2 factorial design, corresponding to five genotypes (H1, H2 and H3 = P-efficient hybrids, H4 and H5 = P-inefficient hybrids) and two P levels (low = 3 mg dm-3, high = 29 mg dm-3). It was found that 18 days after transplanting, the nodal roots of the hybrids H3 and H2 had the longest root hairs. In general, the pH in the rhizosphere of the different genotypes was higher than in non-rhizosphere soil, irrespective of the P level. The pH was higher in the rhizosphere of lateral than of nodal roots. At low P levels, the pH variation of the hybrids H2, H4 and H5 was greater in rhizospheric than in non-rhizospheric soil. The functional microbial activity in the rhizosphere of the hybrids H3 and H5 was highest. At low soil P levels, the indices of microbial functional diversity were also higher. The microbial metabolic profile in the rhizosphere of hybrids H1, H2, H3, and H5 remained unaltered when the plants were grown at low P. The variations in the rhizosphere properties could not be related to patterns of P-use efficiency in the tested genotypes.


2021 ◽  
Author(s):  
Aung Zaw Oo ◽  
YASUHIRO TSUJIMOTO ◽  
Mana Mukai ◽  
Tomohiro Nishigaki ◽  
Toshiyuki Takai ◽  
...  

Abstract Improved phosphorus (P) use efficiency for crop production is needed given the depleting phosphorus ore deposits and increasing ecological concerns about its excessive use. Root system architecture (RSA) is important in efficiently capturing immobile P in soils, while agronomically, localized P application near the roots is a potential approach to address this issue. However, the interaction between genetic traits of RSA and localized P application has been little understood. Near-isogenic lines (NILs) and their parent of rice (qsor1-NIL, Dro1-NIL, and IR64, with shallow, deep, and intermediate root growth angles (RGA), respectively) were grown in flooded pots after placing P near the roots at transplanting (P-dipping). The experiment identified that the P-dipping created an available P hotspot at the soil surface; the qsor1-NIL had the greatest root biomass and root surface area in the 0–3 cm soil layer despite no genotype differences in total values; the qsor1-NIL had significantly greater biomass and P uptake than the other genotypes in the P-dipping. The superior surface root development of qsor1-NIL could have facilitated P uptakes from the P hotspot, implying that P-use efficiency in crop production can be further increased by combining genetic traits of RSA and localized P application.


Sign in / Sign up

Export Citation Format

Share Document