scholarly journals Rhizosphere properties of maize genotypes with contrasting phosphorus efficiency

2011 ◽  
Vol 35 (1) ◽  
pp. 171-181
Author(s):  
Edilson Carvalho Brasil ◽  
Vera Maria Carvalho Alves ◽  
Ivanildo Evódio Marriel ◽  
Gilson Villaça Exel Pitta ◽  
Janice Guedes de Carvalho

An experiment was conducted in a growth chamber to evaluate characteristics of the rhizosphere of maize genotypes contrasting in P-use efficiency, by determining length and density of root hairs, the rhizosphere pH and the functional diversity of rhizosphere bacteria. A sample of a Red Oxisol was limed and fertilized with N, K and micronutrients. In the treatment with the highest P level, 174 mg kg-1 P was added. Each experimental unit corresponded to a PVC rhizobox filled with 2.2 dm-3 soil. The experiment was completely randomized with three replications in a 5 x 2 factorial design, corresponding to five genotypes (H1, H2 and H3 = P-efficient hybrids, H4 and H5 = P-inefficient hybrids) and two P levels (low = 3 mg dm-3, high = 29 mg dm-3). It was found that 18 days after transplanting, the nodal roots of the hybrids H3 and H2 had the longest root hairs. In general, the pH in the rhizosphere of the different genotypes was higher than in non-rhizosphere soil, irrespective of the P level. The pH was higher in the rhizosphere of lateral than of nodal roots. At low P levels, the pH variation of the hybrids H2, H4 and H5 was greater in rhizospheric than in non-rhizospheric soil. The functional microbial activity in the rhizosphere of the hybrids H3 and H5 was highest. At low soil P levels, the indices of microbial functional diversity were also higher. The microbial metabolic profile in the rhizosphere of hybrids H1, H2, H3, and H5 remained unaltered when the plants were grown at low P. The variations in the rhizosphere properties could not be related to patterns of P-use efficiency in the tested genotypes.

2021 ◽  
Vol 262 ◽  
pp. 108054
Author(s):  
Tao Zhou ◽  
Li Wang ◽  
Xin Sun ◽  
Xiaochun Wang ◽  
Tian Pu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aung Zaw Oo ◽  
Yasuhiro Tsujimoto ◽  
Mana Mukai ◽  
Tomohiro Nishigaki ◽  
Toshiyuki Takai ◽  
...  

AbstractImproved phosphorus (P) use efficiency for crop production is needed, given the depletion of phosphorus ore deposits, and increasing ecological concerns about its excessive use. Root system architecture (RSA) is important in efficiently capturing immobile P in soils, while agronomically, localized P application near the roots is a potential approach to address this issue. However, the interaction between genetic traits of RSA and localized P application has been little understood. Near-isogenic lines (NILs) and their parent of rice (qsor1-NIL, Dro1-NIL, and IR64, with shallow, deep, and intermediate root growth angles (RGA), respectively) were grown in flooded pots after placing P near the roots at transplanting (P-dipping). The experiment identified that the P-dipping created an available P hotspot at the plant base of the soil surface layer where the qsor1-NIL had the greatest root biomass and root surface area despite no genotyipic differences in total values, whereby the qsor1-NIL had significantly greater biomass and P uptake than the other genotypes in the P-dipping. The superior surface root development of qsor1-NIL could have facilitated P uptakes from the P hotspot, implying that P-use efficiency in crop production can be further increased by combining genetic traits of RSA and localized P application.


2021 ◽  
Author(s):  
Aung Zaw Oo ◽  
YASUHIRO TSUJIMOTO ◽  
Mana Mukai ◽  
Tomohiro Nishigaki ◽  
Toshiyuki Takai ◽  
...  

Abstract Improved phosphorus (P) use efficiency for crop production is needed given the depleting phosphorus ore deposits and increasing ecological concerns about its excessive use. Root system architecture (RSA) is important in efficiently capturing immobile P in soils, while agronomically, localized P application near the roots is a potential approach to address this issue. However, the interaction between genetic traits of RSA and localized P application has been little understood. Near-isogenic lines (NILs) and their parent of rice (qsor1-NIL, Dro1-NIL, and IR64, with shallow, deep, and intermediate root growth angles (RGA), respectively) were grown in flooded pots after placing P near the roots at transplanting (P-dipping). The experiment identified that the P-dipping created an available P hotspot at the soil surface; the qsor1-NIL had the greatest root biomass and root surface area in the 0–3 cm soil layer despite no genotype differences in total values; the qsor1-NIL had significantly greater biomass and P uptake than the other genotypes in the P-dipping. The superior surface root development of qsor1-NIL could have facilitated P uptakes from the P hotspot, implying that P-use efficiency in crop production can be further increased by combining genetic traits of RSA and localized P application.


2020 ◽  
Vol 12 (16) ◽  
pp. 6496
Author(s):  
Shan Jiang ◽  
Hongyan Zhang ◽  
Wenfeng Cong ◽  
Zhengyuan Liang ◽  
Qiran Ren ◽  
...  

Transforming apple production to one with high yield and economic benefit but low environmental impact by improving P-use efficiency is an essential objective in China. However, the potential for multi-objective improvement for smallholders and the corresponding implications for horticultural practices are not fully appreciated. Survey data collected from 99 apple producers in Quzhou County of Bohai Bay Region were analyzed by the Pareto-based multi-objective optimization method to determine the potential of multi-objective improvement in apple production. With current practices, apple yield was 45 t ha−1, and the economic benefit was nearly 83,000 CNY ha−1 but with as much as 344 kg P ha−1 input mainly from chemical fertilizer and manure. P gray water footprint was up to 27,200 m3 ha−1 due to low P-use efficiency. However, Pareto-optimized production, yield, and economic benefit could be improved by 38% and 111%, respectively. With a concurrent improvement in P-use efficiency, P gray water footprint was reduced by 29%. Multi-objective optimization was achieved with integrated horticultural practices. The study indicated that multi-objective optimization could be achieved at a smallholder scale with realistic changes in integrated horticultural practices. These findings serve to improve the understanding of multi-objective optimization for smallholders, identify possible constraints, and contribute to the development of strategies for sustainable apple production.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Irfan ◽  
Tariq Aziz ◽  
Muhammad Aamer Maqsood ◽  
Hafiz Muhammad Bilal ◽  
Kadambot H. M. Siddique ◽  
...  

2009 ◽  
Vol 41 (9) ◽  
pp. 1814-1823 ◽  
Author(s):  
Nora Alkama ◽  
Emile Bolou Bi Bolou ◽  
Hélène Vailhe ◽  
Lucien Roger ◽  
Sidi Mohamed Ounane ◽  
...  

2020 ◽  
Vol 36 (3) ◽  
Author(s):  
Caroline Merlo Meneghelli ◽  
Marcelo Rodrigo Krause ◽  
Juniomar Schmidt ◽  
João Nacir Colombo ◽  
Gustavo Haddad Souza Vieira

In order to achieve good yields and profitability from ginger crops, the water supply must be adequate. However, there are few studies available which have evaluated the adequate water supply to this vegetable. The objective of this study was to evaluate the effect of different irrigation depths on the development and productivity of ginger plants. The research was conducted at the "Sítio Schmidt" farm located in the municipality of Santa Maria de Jetibá, in the central mountainous region of Espírito Santo State, Brazil. The experimental design was a randomized block design with four replications, each experimental unit consisting of three rows at a spacing of 0.90 m and 0.10 m between plants of two meters extension, totaling 20 experimental units. The treatments consisted of application of five irrigation depths equivalent to: 50%, 75%, 100%, 125% and 150% of crop evapotranspiration (ETc). We evaluated the number of sprouts; average mass of export quality rhizome; the production of export, small and total rhizomes (t ha-1); and water use efficiency. The total water depth applied in the range 1100–1200 mm per cycle favors the development of ginger plants, providing the highest yields of total and export rhizomes, the greatest average mass of export quality rhizome and lowest production of small rhizomes.


Sign in / Sign up

Export Citation Format

Share Document