scholarly journals Studying the effect of Eliminating Repeated Individuals from the Population in a Genetic Algorithm: Solution Perspectives for the Travelling Salesman Problem

Author(s):  
Laura Michele Báez Villegas ◽  
Santiago Omar Caballero Morales

The Travelling Salesman Problem (TSP) is one of the main routing problems in the Logistics and Supply Chain Management fields. Given its computational complexity, metaheuristics are frequently needed to solve it to near-optimality. In this aspect, Genetic Algorithms (GA) are promising methods, however, their search performance depends of populations of solutions which can increase computational processing. Thus, the management of this component is subject to adaptations to reduce its computational burden and improve overall performance. This work explores on the elimination of repeated individuals within the population which may represent a significant fraction of its size and do not add valuable information to the solution search mechanisms of the GA. This cleaning process is expected to contribute to solution diversity. Experiments performed with different TSP test instances support the finding that this cleaning process can improve the convergence of the GA to very suitable solutions (within the 10% error limit). These findings were statistically validated.

Author(s):  
Hendy Tannady ◽  
Andrew Verrayo Limas

Supply chain management plays an important role in enhancing the efficiency and effectiveness of manufacturing industry business process. In this research, the problem is taken from a sales division in a company in determining the optimal sequence when delivering goods into nine cities. This problem is oftenreferred as travelling salesman problem. This problem is considered important since the optimal sequence can cut off operational cost. Creating an artificial intelligence for the company in determining the location and the optimal sequence of delivering goods is the main objective of this research. A genetic algorithm is utilized to determine the location and the optimal sequence. While for processing the data and concluding the result, researcher designed a Java-based application that provides the capability of automatic computing. The result of this computation is a sequence of locations with a fitness number for each. The best fitness number for the sequence location will be used for the final result and the conclusion to answer the company’s problem.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Maha Ata Al-Furhud ◽  
Zakir Hussain Ahmed

The multiple travelling salesman problem (MTSP), an extension of the well-known travelling salesman problem (TSP), is studied here. In MTSP, starting from a depot, multiple salesmen require to visit all cities so that each city is required to be visited only once by one salesman only. It is NP-hard and is more complex than the usual TSP. So, exact optimal solutions can be obtained for smaller sized problem instances only. For large-sized problem instances, it is essential to apply heuristic algorithms, and amongst them, genetic algorithm is identified to be successfully deal with such complex optimization problems. So, we propose a hybrid genetic algorithm (HGA) that uses sequential constructive crossover, a local search approach along with an immigration technique to find high-quality solution to the MTSP. Then our proposed HGA is compared against some state-of-the-art algorithms by solving some TSPLIB symmetric instances of several sizes with various number of salesmen. Our experimental investigation demonstrates that the HGA is one of the best algorithms.


2013 ◽  
Vol 411-414 ◽  
pp. 2013-2016 ◽  
Author(s):  
Guo Zhi Wen

The traveling salesman problem is analyzed with genetic algorithms. The best route map and tendency of optimal grade of 500 cities before the first mutation, best route map after 15 times of mutation and tendency of optimal grade of the final mutation are displayed with algorithm animation. The optimal grade is about 0.0455266 for the best route map before the first mutation, but is raised to about 0.058241 for the 15 times of mutation. It shows that through the improvements of algorithms and coding methods, the efficiency to solve the traveling problem can be raised with genetic algorithms.


2020 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Nurina Savanti Widya Gotami ◽  
Yane Marita Febrianti ◽  
Robih Dini ◽  
Hamim Fathul Aziz ◽  
San Sayidul Akdam Augusta ◽  
...  

Abstract. Determining routes for ice tube delivery in Malang is a complex combinatorial problem classified as NP-hard problem. This study aims for optimizing the sales travel routes determination for the delivery to several customers by considering the efficiency of distance traveled. This problem is modeled in the form of Multi Salesman Traveling Problem. Genetic algorithm was used to optimize the determination of ice tube delivery routes that must be taken by each sales. Problems were coded by using permutation representation in which order crossover and swap mutation methods were used for the reproduction process. The process of finding solution was done by using elitism selection. The best genetic algorithm parameters obtained from the test results are the number of iterations of 40 and the population of 40, with the shortest route of 30.3 km. The final solution given by the genetic algorithm is in the form of a travel route that must be taken by each ice tube sales.Keywords: genetic algorithm, mutli travelling salesman problem, optimization, routeAbstrak. Penentuan rute pengiriman ice tube di kota Malang merupakan permasalahan kombinatorial kompleks yang diklasifikasikan sebagai permasalahan NP-hard. Penelitian ini bertujuan untuk melakukan optimasi dalam pembentukan rute perjalanan sales dalam melakukan pengiriman ke beberapa pelanggan dengan mempertimbangkan efisiensi jarak tempuh. Permasalahan ini dimodelkan dalam bentuk Multi Salesman Travelling Problem. Algoritme genetika digunakan untuk mengoptimalkan pembentukan rute pengiriman ice tube yang harus dilalui oleh setiap sales. Permasalahan dikodekan menggunakan representasi permutasi, dengan proses reproduksi menggunakan metode order crossover dan swap mutation. Proses pencarian solusi dilakukan menggunakan elitism selection. Parameter algoritme genetika terbaik yang didapatkan dari hasil pengujian adalah banyaknya iterasi sebesar 40 dan banyaknya populasi sebesar 40, dengan rute terpendek sebesar 30.3 km. Solusi akhir yang diberikan oleh algoritme genetika berupa rute perjalanan yang harus ditempuh oleh setiap sales ice tube.Kata Kunci: algoritme genetika, multi travelling salesman problem, optimasi, rute


Sign in / Sign up

Export Citation Format

Share Document