scholarly journals Implementation of Multivariate Exponential Power Distribution in Discrimination and Classification of Psychological Data and Other applications

Author(s):  
A. A. Olosund ´ e ◽  
A. T. Soy´ınk ´ a´

Recent advances have shown that some multivariate psychological data are deviating from usual normal assumption either in the tails or kurtosis. Thereby, allowing the call for modelling of such data using more robust elliptically contoured density which includes the normal distribution as a special case. This allowed more flexibility at the kurtosis and tail regions, which is better in handling non-normality in data analysis and also lower the cost of misclassification. The present study employed a robust model for such cases in the context of discrimination and classification of multivariate psychological disorder data using multivariate exponential distribution as an underlining model. Parameters were estimated using the method of maximum likelihood estimation and the discrimination and classification were based on the log likelihood ratio approach. The resulting models relied solidly on the shape parameter, which regulate the tails and the kurtosis, thereby  allowed flexibility. This method enable us to lower the cost of misclassification. Some other areas of applications were also considered in the paper.

Author(s):  
Vijay Kumar ◽  

In this study, we have established a new three-parameter Poisson Exponential Power distribution using the Poisson-G family of distribution. We have presented the mathematical and statistical properties of the proposed distribution including probability density function, cumulative distribution function, reliability function, hazard rate function, quantile, the measure of skewness, and kurtosis. The parameters of the new distribution are estimated using the maximum likelihood estimation (MLE) method, and constructed the asymptotic confidence intervals also the Fisher information matrix is derived analytically to obtain the variance-covariance matrix for MLEs. All the computations are performed in R software. The potentiality of the proposed distribution is revealed by using some graphical methods and statistical tests taking a real dataset. We have empirically proven that the proposed distribution provided a better fit and more flexible in comparison with some other lifetime distributions.


Author(s):  
M. M. E. Abd El-Monsef ◽  
M. M. El-Awady

The exponential power distribution (EP) is a lifetime model that can exhibit increasing and bathtub hazard rate function. This paper proposed a generalization of EP distribution, named generalized exponential power (GEP) distribution. Some properties of GEP distribution will be investigated. Recurrence relations for single moments of generalized ordered statistics from GEP distribution are established and used for characterizing the GEP distribution. Estimation of the model parameters are derived using maximum likelihood method based on complete sample, type I, type II and random censored samples. A simulation study is performed in order to examine the accuracy of the maximum likelihood estimators of the model parameters. Three applications to real data, two with censored data, are provided in order to show the superiority of the proposed model to other models.


2017 ◽  
Vol 31 (2) ◽  
pp. 82-89
Author(s):  
E. S. Epifanov

This article presents a classification of major factors that shape the cost of Internet site. Also discusses the limitations in determining the objectives of the web site; advantages and disadvantages of different factors.


2021 ◽  
Vol 13 (10) ◽  
pp. 5752
Author(s):  
Reza Sabzehgar ◽  
Diba Zia Amirhosseini ◽  
Saeed D. Manshadi ◽  
Poria Fajri

This work aims to minimize the cost of installing renewable energy resources (photovoltaic systems) as well as energy storage systems (batteries), in addition to the cost of operation over a period of 20 years, which will include the cost of operating the power grid and the charging and discharging of the batteries. To this end, we propose a long-term planning optimization and expansion framework for a smart distribution network. A second order cone programming (SOCP) algorithm is utilized in this work to model the power flow equations. The minimization is computed in accordance to the years (y), seasons (s), days of the week (d), time of the day (t), and different scenarios based on the usage of energy and its production (c). An IEEE 33-bus balanced distribution test bench is utilized to evaluate the performance, effectiveness, and reliability of the proposed optimization and forecasting model. The numerical studies are conducted on two of the highest performing batteries in the current market, i.e., Lithium-ion (Li-ion) and redox flow batteries (RFBs). In addition, the pros and cons of distributed Li-ion batteries are compared with centralized RFBs. The results are presented to showcase the economic profits of utilizing these battery technologies.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2405
Author(s):  
Samar Fatima ◽  
Verner Püvi ◽  
Ammar Arshad ◽  
Mahdi Pourakbari-Kasmaei ◽  
Matti Lehtonen

Power distribution networks are transitioning from passive towards active networks considering the incorporation of distributed generation. Traditional energy networks require possible system upgrades due to the exponential growth of non-conventional energy resources. Thus, the cost concerns of the electric utilities regarding financial models of renewable energy sources (RES) call for the cost and benefit analysis of the networks prone to unprecedented RES integration. This paper provides an evaluation of photovoltaic (PV) hosting capacity (HC) subject to economical constraint by a probabilistic analysis based on Monte Carlo (MC) simulations to consider the stochastic nature of loads. The losses carry significance in terms of cost parameters, and this article focuses on HC investigation in terms of losses and their associated cost. The network losses followed a U-shaped trajectory with increasing PV penetration in the distribution network. In the investigated case networks, increased PV penetration reduced network costs up to around 40%, defined as a ratio to the feeding secondary transformer rating. Above 40%, the losses started to increase again and at 76–87% level, the network costs were the same as in the base cases of no PVs. This point was defined as the economical PV HC of the network. In the case of networks, this level of PV penetration did not yet lead to violations of network technical limits.


Sign in / Sign up

Export Citation Format

Share Document