scholarly journals A Comprehensive Mini Review on Co-Crystallization Process

Author(s):  
Ananga Mohan Das ◽  
Ruhul Amin ◽  
Satyabrat Sarma ◽  
Biplab Kumar Dey ◽  
Faruk Alam

Co‑crystal chemistry has recently attracted supramolecular scientists. Co-crystals are comprising of hydrogen bonding assembly between different molecules. Many issues related to the performance characteristics of an active pharmaceutical ingredient (API) can be resolved using the co-crystallization approach. A proper understanding of the crystal structure of an API is required for the successful formation of co-crystals with the selected co‑former. Co-crystal chemistry has recently attracted scientists from the super molecules. Co crystals consist of the assembly of hydrogen bonds between various molecules. Many problems related to the performance characteristics of an active pharmaceutical ingredient (API) can be solved using the method of co-crystallization. Co-Crystals offer an alternate pathway where any API, paying little mind to be acidic, essential, or ionizable gatherings, might be co-gem. This aspect also helps to complement existing methods by reintroducing molecules with limited pharmaceutical profiles based on their non-ionizable functional groups.

2014 ◽  
Vol 70 (a1) ◽  
pp. C540-C540
Author(s):  
Antonietta Di Pumpo ◽  
Mark Weller ◽  
Sax Mason ◽  
Marie-Hélène Lemée-Cailleau

Polymorphism of crystals, crystal habit and crystal growth are important factors that must be controlled for any commercial crystallization process. Pharmaceuticals and agrochemicals are two of the most industrially-important, active-molecule systems for which the physical properties are strongly correlated to their crystal structure. While pharmaceuticals have attracted more academic interest to date, the market for agrochemicals is also very considerable, amounting to $15 bn annually. Given the potential significant toxicity of some agrochemicals, the ability to control physical properties such as solubility and dissolution rates, which depend on the crystal structure of the agrochemical itself, represents a way of optimizing the ratio between the amount of product used and its efficiency, improving its function and reducing its environmental impact. Hydrogen bonds play a crucial role in the spatial arrangement of the active molecules and the crystallization process. However, high accuracy and precision of the hydrogen atom positions can only be achieved through single crystal neutron diffraction (SND). SND experiments have been performed on three herbicides - isoproturon (IPU), pendimethalin (PDM), and diflufenican (DFF) - and the fungicide cyprodinil (CYP) [1][2]. All four structure refinements show a ten-time improvement in precision in the hydrogen atom positions compared to SXD with accurately determined nuclear positions. For cyprodinil, which crystallises as two polymorphs, A and B, differences in the hydrogen bonding network have been determined. Form A is governed by single, linear hydrogen bonds between two molecules, while the B form is characterized by the presence of dimers linked through pairs of hydrogen bonds, leading to a stable 8-membered ring. These differences in structure are reflected in the physical properties of the two polymorphs such as melting point and the observed slow inter-conversion that takes place during storage.


Author(s):  
Kostiantyn V. Domasevitch ◽  
Ganna A. Senchyk ◽  
Andrey B. Lysenko ◽  
Eduard B. Rusanov

The structure of the title salt, ammonium carbamoylcyanonitrosomethanide, NH4 +·C3H2N3O2 −, features the co-existence of different hydrogen-bonding patterns, which are specific to each of the three functional groups (nitroso, carbamoyl and cyano) of the methanide anion. The nitroso O-atoms accept as many as three N—H...O bonds from the ammonium cations [N...O = 2.688 (3)–3.000 (3) Å] to form chains of fused rhombs [(NH4)(O)2]. The most prominent bonds of the carbamoyl groups are mutual and they yield 21 helices [N...O = 2.903 (2) Å], whereas the cyano N-atoms accept hydrogen bonds from sterically less accessible carbamoyl H-atoms [N...N = 3.004 (3) Å]. Two weaker NH4 +...O=C bonds [N...O = 3.021 (2), 3.017 (2) Å] complete the hydrogen-bonded environment of the carbamoyl groups. A Hirshfeld surface analysis indicates that the most important interactions are overwhelmingly O...H/H...O and N...H/H...N, in total accounting for 64.1% of the contacts for the individual anions. The relatively simple scheme of these interactions allows the delineation of the supramolecular synthons, which may be applicable to crystal engineering of hydrogen-bonded solids containing polyfunctional methanide anions.


2012 ◽  
Vol 68 (4) ◽  
pp. o1205-o1205
Author(s):  
Andreas Lemmerer ◽  
Joel Bernstein ◽  
Volker Kahlenberg

The title compound, C18H27N3O, is a derivative of the antituberculosis drug isoniazid (systematic name: pyridine-4-carbohydrazidei). The crystal structure consists of repeatingC(4) chains along thebaxis, formed by N—H...O hydrogen bonds with adjacent amide functional groups that are related by ab-glide plane. The cyclododecyl ring has the same approximately `square' conformation, as seen in the parent hydrocarbon cyclododecane.


2006 ◽  
Vol 62 (5) ◽  
pp. o2043-o2044 ◽  
Author(s):  
Shao-Wen Chen ◽  
Han-Dong Yin ◽  
Da-Qi Wang ◽  
Xia Kong ◽  
Xiao-Fang Chen

The crystal structure of the title compound, C14H14ClN3O3 +·Cl−·0.5H2O, exhibits O—H...O, C—H...O, C—H...Cl, N—H...Cl and O—H...Cl hydrogen bonds. The chloride anions participate in extensive hydrogen bonding with the aminium cations and link molecules through multiple N—H+...Cl− interactions.


Author(s):  
Graham Smith ◽  
Urs D. Wermuth

In the structure of the brucinium salt of 4-aminophenylarsonic acid (p-arsanilic acid), systematically 2,3-dimethoxy-10-oxostrychnidinium 4-aminophenylarsonate tetrahydrate, (C23H27N2O4)[As(C6H7N)O2(OH)]·4H2O, the brucinium cations form the characteristic undulating and overlapping head-to-tail layered brucine substructures packed along [010]. The arsanilate anions and the water molecules of solvation are accommodated between the layers and are linked to them through a primary cation N—H...O(anion) hydrogen bond, as well as through water O—H...O hydrogen bonds to brucinium and arsanilate ions as well as bridging water O-atom acceptors, giving an overall three-dimensional network structure.


Author(s):  
Nurcan Akduran

The title compound [systematic name: 2-(N-hydroxyimino)-1,2-diphenylethanol], C14H13NO2, consists of hydroxy phenylacetophenone and oxime units, in which the phenyl rings are oriented at a dihedral angle of 80.54 (7)°. In the crystal, intermolecular O—HOxm...NOxm, O—HHydr...OHydr, O—H′Hydr...OHydr and O—HOxm...OHydr hydrogen bonds link the molecules into infinite chains along the c-axis direction. π–π contacts between inversion-related of the phenyl ring adjacent to the oxime group have a centroid–centroid separation of 3.904 (3) Å and a weak C—H...π(ring) interaction is also observed. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (58.4%) and H...C/C...H (26.4%) contacts. Hydrogen bonding and van der Waals contacts are the dominant interactions in the crystal packing.


2006 ◽  
Vol 62 (4) ◽  
pp. o1295-o1297
Author(s):  
J. Suresh ◽  
V. P. Alex Raja ◽  
S. Natarajan ◽  
S. Perumal ◽  
A. Mostad ◽  
...  

In the title compound, C30H24N2O·0.5C4H8O2, the piperidone ring adopts the chair conformation and all the phenyl rings are equatorially oriented. The ethyl acetate molecule is present as a space filler and does not participate in the hydrogen-bonding network. The crystal structure is stabilized through C—H...N and C—H...O hydrogen bonds. No significant C—H...π and π–π interactions are observed.


Author(s):  
Wafa Harhouri ◽  
Salma Dhifaoui ◽  
Shabir Najmudin ◽  
Cecilia Bonifácio ◽  
Habib Nasri

In the title compound, [Mn(C44H28N4)Cl]·2C5H6N2, the MnIIIcentre is coordinated by four pyrrole N atoms [averaged Mn—N = 2.012 (4) Å] of the tetraphenylporphyrin molecule and one chloride axial ligand [Mn—Cl = 2.4315 (7) Å] in a square-pyramidal geometry. The porphyrin macrocycle exhibits a non-planar conformation with majorrufflingandsaddlingdistortions. In the crystal, two independent solvent molecules form dimers through N—H...N hydrogen bonding. In these dimers, one amino N atom has a short Mn...N contact of 2.642 (1) Å thus completing the Mn environment in the form of a distorted octahedron, and another amino atom generates weak N—H...Cl hydrogen bonds, which link further all molecules into chains along theaaxis.


Author(s):  
Charlie L. Hall ◽  
Jason Potticary ◽  
Hazel A. Sparkes ◽  
Natalie E. Pridmore ◽  
Simon R. Hall

Lamotrigine is an active pharmaceutical ingredient used as a treatment for epilepsy and psychiatric disorders. Single crystals of an ethanolate solvate, C9H7Cl2N5·C2H5OH, were produced by slow evaporation of a saturated solution from anhydrous ethanol. Within the crystal structure, the lamotrigine molecules form dimers through N—H...N hydrogen bonds involving the amine N atoms in the ortho position of the triazine group. These dimers are linked into a tape motif through hydrogen bonds involving the amine N atoms in the para position. The ethanol and lamotrigine are present in a 1:1 ratio in the lattice with the ethyl group of the ethanol molecule exhibiting disorder with an occupancy ratio of 0.516 (14):0.484 (14).


Sign in / Sign up

Export Citation Format

Share Document