scholarly journals Development of a Validated Stability Indicating Rp-Hplc Method for the Estimation of Pirfenidone in Bulk Drug and Tablet Dosage form

Author(s):  
C. Vanitha ◽  
Sravani Singirikonda

Objective: The present work focused on developing a validated stability indicating RP-HPLC method for the estimation of pirfenidone in bulk drug and tablet dosage form. Methods: The chromatographic separation was performed on symmetry C18 (150 mm x 4.6, 5 micron) with a 1 ml/min flow rate at 315nm. The mobile phase employed was orthophosphoric acid buffer: acetonitrile (65:35). Column temperature was maintained at 30ºC. Pirfenidone was subjected to different forced degradation conditions according to ICH guidelines, including acid, base and neutral hydrolysis, oxidation, photolysis and thermal degradation.  Results: In alkali, acidic, oxidation and UV degradation conditions the drug shows considerable degradation. Pirfenidone was stable under neutral hydrolysis and thermal degradation. Pirfenidone was stable under extreme degradation conditions showing less than 8% of degradation in all degradation conditions. This result showed that pirfenidone was stable under stress degradation. Then the optimized method was validated for the parameters like linearity, accuracy, precision and robustness as per ICH guidelines.

Author(s):  
Gundapaneni Ravi Kumar ◽  
Rayala Rama Rao ◽  
Vadde Megha Vardhan ◽  
V. D. N. Kumr Abbaraju

Background: In the current study, asimple and specific stability indicating RP-HPLC method was developed and validated for the determination of Lamivudine and Raltegravir in bulk drug and it tablet dosage form using an UV-detector. Good separation was achieved by isocratic ally on a Zorbax SB-Phenyl (150 × 4.6 mm, 3.5 μ, 80 A°) column, using a mobile phase composition of buffer (0.1% v/v Phosporic acid in water): Acetonitrile (40:60 v/v) at a flow rate of 1.0 mL/min. The eluted analytes detected at 260 nm wavelength. Results: Lamivudine and Raltegravir were eluted at 3.1 and 5.4 min respectively with run time 7 min. Linearity in the method was measured in the concentration range of 30 – 70 μg/mL and 60 – 140 μg/mL for Lamivudine and Raltegravirrespectively. The percentage recoveries of Lamivudine and Raltegravirwere determined to be 100.30% and 100.53%, respectively. The validation of the developed method is carried as per USFDA and ICH guidelines, and the degradants were well resolved from Raltegravir and Lamivudine peaks. The developed RP-HPLC method was highly precise, specific, sensitive, and stability indicating. Conclusion: The results of the analysis prove that thedeveloped RP-HPLC method is simple, economical and widely acceptable, which can be used in routine quality control tests in the industry.


2010 ◽  
Vol 93 (2) ◽  
pp. 523-530 ◽  
Author(s):  
Sérgio Luiz Dalmora ◽  
Maximiliano da Silva Sangoi ◽  
Daniele Rubert Nogueira ◽  
Lucélia Magalhães da Silva

Abstract An RP-HPLC method was validated for the determination of entecavir in tablet dosage form. The HPLC method was carried out on a Gemini C18 column (150 4.6 mm id) maintained at 30C. The mobile phase consisted of acetonitrilewater (95 + 5, v/v)/potassium phosphate buffer (0.01 M, pH 4; 9 + 91, v/v) pumped at a flow rate of 1.0 mL/min. Photodiode array detection was at 253 nm. The chromatographic separation was obtained with a retention time of 4.18 min, and the method was linear in the range of 0.5200 g/mL (r2 0.9998). The specificity and stability-indicating capability of the method was proven through forced degradation studies, which also showed that there was no interference of the excipients and an increase of the cytotoxicity only by the basic condition. The accuracy was 101.19, with bias lower than 1.81. The LOD and LOQ were 0.39 and 0.5 g/mL, respectively. Method validation demonstrated acceptable results for precision and robustness. The proposed method was applied for the analysis of tablet formulations, to improve QC and assure therapeutic efficacy.


2020 ◽  
Vol 10 (6) ◽  
pp. 6610-6618

A Simple, selective, accurate, precise, linear, and stability-indicating RP-HPLC method was developed and validated for the estimation of Cinacalcet hydrochloride in bulk and tablet dosage forms. Chromatographic separation was achieved on X-Terra Symmetry C18 (4.6 x 150mm; 5 m) with mobile phase containing Phosphate buffer: Acetonitrile (40:60 v/v) pH adjusted to 3.0 ±0.05 with diluted ortho-phosphoric acid. The flow rate was maintained at 0.9 mL/min. The eluent was monitored at 282 nm. Moreover, the retention time of Cinacalcet was 2.8 minutes. The method was validated for linearity, accuracy, precision, and robustness as per ICH guidelines. The developed method was found linear between 25-150 μg/ml, and the linear regression coefficient was 0.999. The % RSD values are less than 2 % indicating the accuracy and precision of the method. The percentage of recovery was obtained from 98-102%. The system suitability parameters were found to be within the limit. Forced degradation studies were conducted under various conditions. The proposed method is simple, rapid, precise, and accurate. It can be used for the quantitation of Cinacalcet hydrochloride in bulk and commercial pharmaceutical dosage forms.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shilpi Pathak ◽  
Pradeep Mishra

Abstract Background A stability-indicating RP-HPLC method was developed and validated for the estimation of empagliflozin drug and its tablet dosage form using a DAD detector. The mobile phase consisted of methanol/acetonitrile/0.1%OPA (75:20:5). The peak was observed at 2.54 min using 222.0 nm absorption maxima. Results Calibration curve plot was found within the range of 10–50 µg/mL. The coefficient of determination (R2) was found to be 0.9990. Forced degradation studies were performed for the empagliflozin in various conditions, and the results were calculated as %RSD values and were found to be within the limits. Conclusion The method was validated as per ICH guidelines with respect to all validation parameters.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
V. Ashok Chakravarthy ◽  
B. B. V. Sailaja ◽  
Avvaru Praveen Kumar

The present work was the development of a simple, efficient, and reproducible stability-indicating reverse-phase high performance liquid chromatographic (RP-HPLC) method for simultaneous determination enrofloxacin (EFX) and its degradation products including ethylenediamine impurity, desfluoro impurity, ciprofloxacin impurity, chloro impurity, fluoroquinolonic acid impurity, and decarboxylated impurity in tablet dosage forms. The separation of EFX and its degradation products in tablets was carried out on Kromasil C-18(250×4.6 mm, 5 μm) column using 0.1% (v/v) TEA in 10 mM KH2PO4(pH 2.5) buffer and methanol by linear gradient program. Flow rate was 1.0 mL min−1with a column temperature of 35°C and detection wavelength was carried out at 278 nm and 254 nm. The forced degradation studies were performed on EFX tablets under acidic, basic, oxidation, thermal, humidity, and photolytic conditions. The degraded products were well resolved from the main active drug and also from known impurities within 65 minutes. The method was validated in terms of specificity, linearity, LOD, LOQ, accuracy, precision, and robustness as per ICH guidelines. The results obtained from the validation experiments prove that the developed method is a stability-indicating method and suitable for routine analysis.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dipali Bagal ◽  
Akhil Nagar ◽  
Aditya Joshi ◽  
Aishwarya Chachare ◽  
Atul Shirkhedkar ◽  
...  

Abstract Background In the current study, a simple, improved, precise, rapid, and accurate reverse phase liquid chromatographic method was produced for the estimation of dalfampridine in bulk and tablet dosage form which is a potassium channel blocker used for the treatment of multiple sclerosis (MS). The separation of dalfampridine was achieved isocratically on a C18 column (250 × 4.6 mm, 5 μm) using (0.1% v/v) buffer pH 3.0 ± 0.05 adjusted with diluted orthophosphoric acid (OPA) and acetonitrile (ACN) in the ratio of 60:40% (v/v) as a mobile phase, at a flow rate of 0.5 mL/min, and column temperature of 40 °C. HPLC grade methanol as diluents was used. Five microliters of the standard solution of the drug was injected, and the eluted analytes were detected at 262 nm. Results Dalfampridine was eluted at 4.5 min with a run time of 10 min. Linearity in the method was measured in the concentration range of 25–75 ppm with a correlation coefficient of 0.999. Limit of detection and limit of quantitation were found to be 0.711 μg/mL and 2.154 μg/mL, respectively. Dalfampridine was subjected for forced degradation stability study in conditions of thermal, acid, alkali, and oxidation and photo-degradation condition. The degradants were well resolved from the dalfampridine main peak. Validation of the developed method is carried as per USFDA and ICH guidelines. Conclusion The results of the analysis prove that the method is simple, improved, precise, accurate, and rapid for estimating the content of dalfampridine in bulk drug and tablet dosage form and can be applied for routine analysis.


2018 ◽  
Vol 10 (5) ◽  
pp. 90
Author(s):  
Subba Rao ◽  
B. Balaswami ◽  
P. Venkata Ramana ◽  
P. Sanjeeva ◽  
G. Srenivasulareddy

Objective: To develop a novel, accurate, precise and linear reverse phase high performance liquid chromatographic (RP-HPLC) method for simultaneous quantitative estimation of ramipril, atorvastatin and clopidogrel in Atamra-CV tablet and validate as per international conference on harmonization (ICH) guidelines and to perform the force degradation studies using the developed method.Methods: In the present work, the good chromatographic separation was achieved isocratically using a shim-pack HPLC Kromasil 150 mm x 4.6 mm, 5 m. m. And mobile phase consisting of 0.05 M potassium dihydrogen orthophosphate pH 3 adjusted with orthophosphoric acid and acetonitrile in the ratio (52:48), at flow rate 1 ml/min and column temperature (30 °C). The effluents obtained were monitored at 210 nm with the UV-visible detector.Results: The retention time of ramipril, atorvastatin and clopidogrel was found to be 2.893 min, 5.012 min and 6.102 min respectively. The linearity of ramipril, atorvastatin and clopidogrel was found in the range of 25-150 % and the correlation coefficient for ramipril, atorvastatin and clopidogrel were>0.999. The high recovery values (98%-101%) indicate a satisfactory accuracy. The low percent relative standard deviation (% RSD) values in the precision study reveals that the method is precise. The three-drug samples were subjected to stress conditions of acidic and alkaline hydrolysis, oxidation, photolysis and thermal degradation. The proposed method proved to be stability-indicating by resolution of the analytes from their forced-degradation products.Conclusion: The developed method is novel, simple, precise, rapid, accurate and reproducible for simultaneous estimation of ramipril, atorvastatin and clopidogrel tablet dosage form. Hence the proposed method may find practical applications as a quality-control tool in the simultaneous analysis of the three drugs in combined dosage forms in quality-control laboratories. The proposed method was made use of photodiode array (PDA) as a tool for peak identification and purity confirmation.


2017 ◽  
Vol 9 (5) ◽  
pp. 121 ◽  
Author(s):  
Hemant K. Jain ◽  
Archana A. Gunjal

Objective: To develop an accurate, simple, precise and specific stability indicating RP-HPLC method for estimation of dimethyl fumarate in bulk and capsules.Methods: An Inertsil ODS (150x4.6 mm, 5µ) column and a mobile phase containing acetonitrile: potassium dihydrogen phosphate buffer pH 6.8 (50:50% v/v) was used for this study. The flow rate was maintained at 1.0 ml/min; column temperature was fixed at 35 °C and UV detection was carried out at 210 nm. The forced degradation studies were performed and method was validated with as per ICH guidelines.Results: The retention time of dimethyl fumarate was found to be 3.3±0.02 min. The value of correlation coefficient between peak area and concentration was found to be 0.9993. The mean percent recovery of dimethyl fumarate in capsules was found in the range of 99.65 to 101.64%. The results of forced degradation studies indicated that the drug was found to be stable in basic, oxidative and thermal conditions while degraded in acidic conditions.Conclusion: It can be conducted from results that the developed HPLC method is simple, accurate, precise and specific. Results of stress testing study revealed that the method is stability indicating. Thus, this method can be used for routine analysis of dimethyl fumarate capsules and check their stability.  


Author(s):  
Sireesha D ◽  
Sai Lakshmi E ◽  
Sravya E ◽  
Vasudha Bakshi

A new simple, rapid, specific, accurate, precise and novel Reverse Phase High Performance Liquid Chromatography (RP-HPLC) method has been developed for the estimation of Sitagliptin Phosphate in the pharmaceutical dosage form. The chromatographic separation for Sitagliptin was achieved with mobile phase containing methanol, Thermoscientific C18 column, (250x4.6 particle size of 5μ) at room temperature and UV detection at 248 nm. The compounds were eluted in the isocratic mode at a flow rate of 1ml/min. The retention time of Sitagliptin was 1.91min. The above method was validated in terms of linearity, accuracy, precision, LOD and LOQ in accordance with ICH guidelines.


Sign in / Sign up

Export Citation Format

Share Document