scholarly journals Development and Validation of Stability Indicating Reverse Phase High Performace Liquid Chromatography Method for the Determination of Umeclidinium and Vilanterol in Pharmaceutical Dosage Form

Author(s):  
Ahsaana Hamsa ◽  
K. Praseetha ◽  
K. P. Dijin Raj ◽  
T. V. Ashira ◽  
O. V. Athira ◽  
...  

A Sensitive, fast, linear and accurate liquid chromatography technique was developed for the simultaneous determination of Umeclidinium and Vilanterol in Powder dosage form. The estimation was carried out using Phenomenex C18 column (150 × 4.6 mm, 5μ) with ammonium acetate: acetonitrile taken in the ratio 60:40 as mobile phase and pumped at a flow rate of 0.9 ml/min at 300C. Detection wavelength selected was 245 nm. Retention times of Umeclidinium and Vilanterol were found to be 2.219 min and 2.794 min. The method was validated in terms of linearity, precision, accuracy, limit of detection, limit of quantification as per International council for harmonization guidelines. Degradation studies performed indicated the stability of the drug. All of these analytical validation parameters were evaluated, and the percent relative standard deviations were calculated, indicating the method's suitability for determination of Umeclidinium and Vilanterol in pharmaceutical dosage form.

2020 ◽  
Vol 8 (2) ◽  
pp. 1-7
Author(s):  
Ihsan M. Shaheed ◽  
Saadiyah A. Dhahir

The quinolizindine alkaloid compound, oxymatrine pesticide, was analysis in the river water samples collected from different agriculture areas in the Iraqi city of Kerbala and also in its formulation using developed reverse-phase high-performance liquid chromatography method. Acetonitrile:methanol (60:40 v/v) was chosen as mobile phase at pH (7.0), flow rate 0.5 mL/min, and 20 µL as volume injection. Modified ecological-friendly method, dispersive liquid-liquid microextraction, was used for the extraction of oxymatrine from water samples. Linearity study was constructed from 0.1 to 70 μg/mL at λmax 205 nm. The limit of detection and limit of quantification were 0.025 and 0.082 μg/mL, respectively, and the relative standard deviation (RSD) % was 0.518%. Three spiked levels of concentration (20.0, 40.0, and 70.0 μg/mL) were used for the validation method. The percentage recovery for the three spiked samples was ranged between 98.743 and 99.432 and the RSD% was between 0.051 and 0.202%, the formulation studies of oxymatrine between 99.487 and 99.798, and the RSD% was ranged from 0.045 to 0.057%. The developed method can be used accurately and selectively for the determination of oxymatrine in environmental samples and in the formulation.


2020 ◽  
Vol 17 (34) ◽  
pp. 1046-1054
Author(s):  
Ihsan Mahdi SHAHEED ◽  
Saadiyah Ahmed DHAHIR

The triazole, tebuconazole pesticide, was determined in its formulation and also in the river water samples collected from different agriculture areas in the Iraqui city of Kerbala using developed high-performance liquid chromatography method(HPLC) with UV-visible detection, The mobile composition phase was a mixture of acetonitrile:methanol (50:50 v/v) and the column was C18 (250 cm x 4.6 mm,5μm). Also modified dispersive liquidliquid microextraction (DLLME), which is regarded as an ecological -friendly method, was used for the extraction of tebuconazole from water samples using acetonitrile and chloroform as solvents extraction and dispersive agent, respectively. Linearity to maintain the calibration curve was achieved from (0.1-70) μg.mL-1 with a limit of detection(0.053) μg.mL-1 and limit of quantification (0.174) μg.mL-1. Three spiked levels of concentration (1.0, 5.0, and 10) μg.mL-1 were used for the validation of the method. The relative standard deviation (RSD%) was (0.294- 0.813)%, and the percentage recovery was (100.001-100.005). The formulation studies for two different concentrations (10 and 40) μg.mL-1, which prepared from tebuconazole formulation (Raxil ODS2 2%), gave acceptable percentage recovery between (98.956-99.833). The developed method can be used accurately for the determination of tebuconazole in water samples and in the formulation of tebuconazole effectively.


Author(s):  
SANATHOIBA SINGHA S ◽  
SREENIVAS RAO T

Objective: This work makes an attempt to establish a sensitive and accurate method for the development and validation of an analytical method for estimation of ulipristal acetate (UPA) in bulk and pharmaceutical dosage form. Methods: A mixture of 20 mM acetate buffer pH 3.7 and methanol in the ratio of 70:30 (v/v %) was used as the mobile phase. An xBridge™ C18 column (250 mm × 4.6 mm, 5μ) was used for the analysis at a flow rate of 1 ml/min, injection volume of 20 μl, run time of 15 min, and detection wavelength of 309 nm. The repeatability (within-day in triplicates) and intermediate precision (for 2 days) were carried out by six injections and the obtained results within and between the days of trials were expressed as percent relative standard deviation (% RSD). The linearity of the method was determined by the analysis of analyte concentration across a range of 10 μg/ml–60 μg/ml. Results: The % RSD values of precision studies were found to be below the accepted limit of 2%. The method was found to be linear with a correlation coefficient (R2) of 0.98. The method was also found to be accurate and robust with suitable values. Limit of detection (LOD) and limit of quantification (LOQ) of the method were found to be 0.371 μg/ml and 1.23 μg/ml, respectively. Conclusion: The results of analysis prove that this method can be used for the routine determination of UPA in bulk drug and in pharmaceutical dosage forms.


2006 ◽  
Vol 89 (6) ◽  
pp. 1532-1537 ◽  
Author(s):  
AndrÉ Rolim Baby ◽  
Carolina P M Maciel ◽  
Telma M Kaneko ◽  
Maria Valria R Velasco

Abstract A precise, accurate, and sensitive UV spectrophotometric method was developed and validated for routine quantification of total bioflavonoids, expressed as rutin, from a topical oil-in-water pharmaceutical emulsion containing the extract of Trichilia catigua Adr. Juss and Ptychopetalum olacoides Bentham. The method was validated experimentally, and the data were treated rigorously by statistical analysis. The following analytical parameters were assessed: linearity, specificity, intra- and interrun precision measured as relative standard deviation (RSD, %), intra- and interrun accuracy (E, %), recovery (Rec., %), limit of detection (LOD, μg/mL), and limit of quantification (LOQ, μg/mL). The UV spectrophotometric method was linear (r2 0.9995) for standard rutin over the concentration range of 5.015.0 g/mL with specificity for total bioflavonoids (expressed as rutin) at 361.0 nm with an absence of interferents from the complex matrix; RSD of ≤1.79%, intrarun (E 97.88 ±1.75 to 99.0 ± 0.33%) and interrun (E 98.38 ± 1.12 to 100.79 ± 1.30%) accuracy; Rec. 98.64 ± 0.42 to 100.74 ± 0.41%; LOD 0.20 μg/mL; and LOQ 0.30 μg/mL.


2021 ◽  
Vol 12 (4) ◽  
pp. 2610-2614
Author(s):  
Subhadip C ◽  
Nalanda Baby R ◽  
Pridhvi Krishna G ◽  
Suraj M ◽  
Shyamdeo Kumar T

An accurate derivative spectrophotometric method was developed and validated for the determination of dipeptidyl peptidase inhibitor vildagliptin in the pharmaceutical dosage form. The second derivative of the UV spectra has enabled the estimation of vildagliptin absorbance at 217 nm without any interferences. Linearity, precision, accuracy, detection (LOD), and quantification (LOQ) limits were established for method validation. Calibration curve was linear in the range of 10-60 µg/mL with a regression coefficient of 0.998. The method was validated as per the International Conference on Harmonization (ICH Q2 (R1)). The limit of detection and the limit of quantification were found to be 2.06 µg/mL and 6.25 µg/mL, respectively. Intra and interday precision data illustrated that the method has acceptable reproducibility as the percentage relative standard deviation (RSD) was less than 2 %, which indicates the precision of the method. The recovery was 98.39 % by the standard addition method. The percentage assay of vildagliptin was 98.06 % which showed good applicability. The following results indicate that the procedure is accurate, precise, and reproducible while being simple and less time-consuming. The method was demonstrated to be adequate for routine analysis in quality control. 


2013 ◽  
Vol 57 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Anna Gajda ◽  
Andrzej Posyniak ◽  
Andrzej Bober ◽  
Tomasz Błądek ◽  
Jan Żmudzki

Summary A liquid chromatography method with UV detection for determination of oxytetracycline (OTC) in honey has been developed. The samples were extracted with the solution of oxalic acid. The clean-up procedure was performed by solid phase extraction (SPE) using polymeric Strata X and carboxylic acid cartridges. Chromatographic separation was carried out on the Luna C8 analytical column with mobile phase consisting of acetonitrile-0.02 M oxalic acid. The method has been successfully validated according to the requirements of the European Decision 2002/657/EC and this method is used in routine control of oxytetracycline in honey samples. The limit of detection (LOD) and limit of quantification (LOQ) of the presented method were 10 and 12.5 μg/kg, respectively. The developed method has also been verified in quantitative determination of oxytetracycline residues in honey after experimental treatment with this product in bee colonies.


Author(s):  
Heena Ar Shaikh ◽  
Vandana Jain

Objective: A simple, accurate, precise, robust reverse phase high performance liquid chromatography (RP-HPLC) method was developed for the estimation of telmisartan and nebivolol hydrochloride (HCl) simultaneously in its combined dosage form.Methods: The compounds were well resolved in an isocratic method using the mobile phase composition of acetonitrile: Buffer (potassium dihydrogen orthophosphate pH adjusted 3.1 with orthophosphoric acid) in a ratio of 40:60 v/v at a flow rate of 1.2 ml/min using C18 Shim-pack (150 mm × 4.6 mm, 5 μ) column. The detection was carried out at 280 nm.Results: The retention time of telmisartan and nebivolol HCl was 4.8 min and 6.5 min, respectively. The developed method was validated by evaluating various validation parameters such as linearity, precision, accuracy, robustness, specificity, limit of detection, and limit of quantification according to the international council for harmonization guidelines. The standard calibration curve was obtained in the concentration range of 24–56 μg/ml for telmisartan and 3–7 μg/ml for nebivolol HCl. The overall average % recovery was found out to be 100.35 for telmisartan and 98.84 for nebivolol HCl.Conclusion: Statistical analysis of the data showed that the method is reproducible and selective for the estimation of telmisartan and nebivolol HCl. The proposed method could be used for analysis of telmisartan and nebivolol HCl in their dosage form.


2013 ◽  
Vol 19 (3) ◽  
pp. 333-337 ◽  
Author(s):  
A.C. Arvadiya ◽  
P.P. Dahivelker

A simple, precise, accurate, sensitive and repeatable RP-UPLC method was developed for quantitative determination of atropine sulphate in pharmaceutical dosage form. The method was developed by using C18 column Hiber HR Purospher Star (100mm?2.1mm id, 2?m particle size) as stationary phase with Phosphate Buffer: Acetonitrile (87:13, %v/v) as a mobile phase, pH was adjusted to 3.5 by ortho-phosphoric acid at a flow rate of 0.5 mL/min and column temperature maintained at 30?C. Quantification of eluted compound was achieved with PDA detector at 210 nm. Atropine sulphate followed linearity in concentration range of 2.5-17.5 ?g/mL with r2=0.9998 (n=6). Limit of detection (LOD) and limit of quantification (LOQ) values were 0.0033 and 0.0102 ?g/mL for atropine sulphate. The validation study is carried out as per International Conference on Harmonization (ICH) guidelines. This method was successfully applied for estimation of atropine sulphate in pharmaceutical formulation.


Author(s):  
Gudipally. Mounika ◽  
K. Bhavya Sri ◽  
R. Swethasri ◽  
M. Sumakanth

To develop an accurate, precise, specific high performance liquid chromatography method for quantification of Canagliflozin in bulk and dosage forms. A C18 column (250mm X 4.6mm; 5μm phenomenex) was used with mobile phase containing Acetonitrile-0.1% sodium acetate buffer (pH-4.6), (20:80) in isocratic mode. The flow rate maintained was 1.0ml/min and the U.V detector was operated at 291nm. The retention time of Canagliflozin was 3.307min and showed a good linearity in concentration range of 2-14μg/ml with correlation coefficient of 0.999. The average percent recovery was found to be 99.98%. The developed method follows validation parameters such as system suitability, linearity, precision, accuracy, limit of detection and limit of quantification and robustness as per ICH guidelinesQ2(R1). The proposed method was found to provide faster retention time with sharp resolution with linearity at a lowest concentration as compared to previous methods and this method is validated as per International conference on harmonization guidelines and successfully applied for bulk and pharmaceutical dosage form.


Author(s):  
ANUJA SURYAWANSHI ◽  
AFAQUEANSARI ◽  
MALLINATH KALSHETTI

Objective: The present work is aimed to develop a simple, rapid, selective and economical UV spectrophotometric method for quantitative determination of Glipizideinbulk and pharmaceutical dosage form. Methods: In this method Dimethyl Form amide (DMF) was used as solvent, the absorption maxima was found to be275 nm in DMF. The developed method was validated for linearity, accuracy, precision, ruggedness, robustness, LOD and LOQ in accordance with the requirements of ICH guideline. Results: The linearity was found to be 10-60 µg/ml having linear equation y=0.017x-0.006 with correlation coefficient of 0.997. The% recovery was found to be in the range of 98.7-100%. The % RSD for intra-day and inter-day precision was found to be 0.569923 and 0.40169 respectively. The limit of detection (LOD) and limit of quantification (LOQ) was found to be3.06 µg/ml and 9.27 µg/ml respectively. Conclusion: The developed method was validated as per ICH Q2(R1) guidelines. The novel method is applicable for the analysis of bulk drug in its pharmaceutical dosage form.


Sign in / Sign up

Export Citation Format

Share Document