A New Second-Derivative Spectrophotometric Method for the Determination of Vildagliptin in Pharmaceutical dosage form

2021 ◽  
Vol 12 (4) ◽  
pp. 2610-2614
Author(s):  
Subhadip C ◽  
Nalanda Baby R ◽  
Pridhvi Krishna G ◽  
Suraj M ◽  
Shyamdeo Kumar T

An accurate derivative spectrophotometric method was developed and validated for the determination of dipeptidyl peptidase inhibitor vildagliptin in the pharmaceutical dosage form. The second derivative of the UV spectra has enabled the estimation of vildagliptin absorbance at 217 nm without any interferences. Linearity, precision, accuracy, detection (LOD), and quantification (LOQ) limits were established for method validation. Calibration curve was linear in the range of 10-60 µg/mL with a regression coefficient of 0.998. The method was validated as per the International Conference on Harmonization (ICH Q2 (R1)). The limit of detection and the limit of quantification were found to be 2.06 µg/mL and 6.25 µg/mL, respectively. Intra and interday precision data illustrated that the method has acceptable reproducibility as the percentage relative standard deviation (RSD) was less than 2 %, which indicates the precision of the method. The recovery was 98.39 % by the standard addition method. The percentage assay of vildagliptin was 98.06 % which showed good applicability. The following results indicate that the procedure is accurate, precise, and reproducible while being simple and less time-consuming. The method was demonstrated to be adequate for routine analysis in quality control. 

2006 ◽  
Vol 89 (6) ◽  
pp. 1532-1537 ◽  
Author(s):  
AndrÉ Rolim Baby ◽  
Carolina P M Maciel ◽  
Telma M Kaneko ◽  
Maria Valria R Velasco

Abstract A precise, accurate, and sensitive UV spectrophotometric method was developed and validated for routine quantification of total bioflavonoids, expressed as rutin, from a topical oil-in-water pharmaceutical emulsion containing the extract of Trichilia catigua Adr. Juss and Ptychopetalum olacoides Bentham. The method was validated experimentally, and the data were treated rigorously by statistical analysis. The following analytical parameters were assessed: linearity, specificity, intra- and interrun precision measured as relative standard deviation (RSD, %), intra- and interrun accuracy (E, %), recovery (Rec., %), limit of detection (LOD, μg/mL), and limit of quantification (LOQ, μg/mL). The UV spectrophotometric method was linear (r2 0.9995) for standard rutin over the concentration range of 5.015.0 g/mL with specificity for total bioflavonoids (expressed as rutin) at 361.0 nm with an absence of interferents from the complex matrix; RSD of ≤1.79%, intrarun (E 97.88 ±1.75 to 99.0 ± 0.33%) and interrun (E 98.38 ± 1.12 to 100.79 ± 1.30%) accuracy; Rec. 98.64 ± 0.42 to 100.74 ± 0.41%; LOD 0.20 μg/mL; and LOQ 0.30 μg/mL.


Author(s):  
Muchlisyam Muchlisyam ◽  
Sudarmi Sudarmi ◽  
Cindy Caroline

 Objective: Mean centering of ratio spectra method (MCR method) is one of the simplest methods for the determination of drug mixtures. The purpose of this research is to determine the content of theophylline (THEO) and ephedrine HCl (EPH) in tablets by MCR spectra method.Methods: This research was conducted with the MCR method. It was measured at 271 nm for THEO and 257 nm for EPH using 0.1 N HCL as a solution. The calculation was conducted with Matlab application. The analytical characteristics of the method are detection limit, accuracy, precision, and selectivity. Standard addition method was used to increase the concentration of EPH in the sample until it reached the range of calibration concentration.Result: The research has showed that validations for THEO were 100.57% for accuracy, 0.68% for relative standard deviation (RSD), 0.46 μg/mL for limit of detection (LOD), and 1.52 μg/mL for limit of quantification (LOQ). Meanwhile, the validations for EPH are 100.02% for accuracy, 0.07% for RSD, 43.12 μg/mL for LOD, and 143.72 μg/mL for LOQ. The level of THEO is 97.43 ± 0.17% and the level of EPH is 101.36 ± 0.25% for brand one’s tablet. Meanwhile, brand two’s tablet contains 98.72 ± 0.14% of THEO and 103.62 ± 0.23% of EPH.Conclusion: MCR ultraviolet spectrophotometric method can be used to determine the content of THEO and EPH in tablets and meets the detection limit, accuracy, precision, and selectivity.


Author(s):  
SANATHOIBA SINGHA S ◽  
SREENIVAS RAO T

Objective: This work makes an attempt to establish a sensitive and accurate method for the development and validation of an analytical method for estimation of ulipristal acetate (UPA) in bulk and pharmaceutical dosage form. Methods: A mixture of 20 mM acetate buffer pH 3.7 and methanol in the ratio of 70:30 (v/v %) was used as the mobile phase. An xBridge™ C18 column (250 mm × 4.6 mm, 5μ) was used for the analysis at a flow rate of 1 ml/min, injection volume of 20 μl, run time of 15 min, and detection wavelength of 309 nm. The repeatability (within-day in triplicates) and intermediate precision (for 2 days) were carried out by six injections and the obtained results within and between the days of trials were expressed as percent relative standard deviation (% RSD). The linearity of the method was determined by the analysis of analyte concentration across a range of 10 μg/ml–60 μg/ml. Results: The % RSD values of precision studies were found to be below the accepted limit of 2%. The method was found to be linear with a correlation coefficient (R2) of 0.98. The method was also found to be accurate and robust with suitable values. Limit of detection (LOD) and limit of quantification (LOQ) of the method were found to be 0.371 μg/ml and 1.23 μg/ml, respectively. Conclusion: The results of analysis prove that this method can be used for the routine determination of UPA in bulk drug and in pharmaceutical dosage forms.


Author(s):  
Ahsaana Hamsa ◽  
K. Praseetha ◽  
K. P. Dijin Raj ◽  
T. V. Ashira ◽  
O. V. Athira ◽  
...  

A Sensitive, fast, linear and accurate liquid chromatography technique was developed for the simultaneous determination of Umeclidinium and Vilanterol in Powder dosage form. The estimation was carried out using Phenomenex C18 column (150 × 4.6 mm, 5μ) with ammonium acetate: acetonitrile taken in the ratio 60:40 as mobile phase and pumped at a flow rate of 0.9 ml/min at 300C. Detection wavelength selected was 245 nm. Retention times of Umeclidinium and Vilanterol were found to be 2.219 min and 2.794 min. The method was validated in terms of linearity, precision, accuracy, limit of detection, limit of quantification as per International council for harmonization guidelines. Degradation studies performed indicated the stability of the drug. All of these analytical validation parameters were evaluated, and the percent relative standard deviations were calculated, indicating the method's suitability for determination of Umeclidinium and Vilanterol in pharmaceutical dosage form.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Neelkant Prasad ◽  
Roshan Issarani ◽  
Badri Prakash Nagori

A simple and sensitive ultraviolet spectrophotometric method for quantitative estimation of glipizide in presence of lipid turbidity is described to avoid false estimation due to diffraction by turbidity. UV detection was performed at 230 nm, 225 nm, and 235 nm, and the calibration curve was plotted between resultant of absorbance of [230 nm − (225 nm + 235 nm)/2] and concentration of analyte. The calibration curve was linear over the concentration range tested (1–20 μg/mL) with limit of detection of 0.27 μg/mL and limit of quantification of 0.82 μg/mL. Percent relative standard deviations and percent relative mean error, representing precision and accuracy, respectively, for clear as well as turbid solutions, were found to be within acceptable limits, that is, always less than 0.69 and 0.41, respectively, for clear solution and 0.65 and 0.47, respectively, for turbid solution. Conclusively, our method was successfully applied for the determination of glipizide in clear as well as turbid solutions, and it was found that the drug analyte in both types of solutions can be detected from the same calibration curve accurately and precisely and glipizide entrapped in the liposomes or in proliposomal matrix was not detected.


2013 ◽  
Vol 19 (3) ◽  
pp. 333-337 ◽  
Author(s):  
A.C. Arvadiya ◽  
P.P. Dahivelker

A simple, precise, accurate, sensitive and repeatable RP-UPLC method was developed for quantitative determination of atropine sulphate in pharmaceutical dosage form. The method was developed by using C18 column Hiber HR Purospher Star (100mm?2.1mm id, 2?m particle size) as stationary phase with Phosphate Buffer: Acetonitrile (87:13, %v/v) as a mobile phase, pH was adjusted to 3.5 by ortho-phosphoric acid at a flow rate of 0.5 mL/min and column temperature maintained at 30?C. Quantification of eluted compound was achieved with PDA detector at 210 nm. Atropine sulphate followed linearity in concentration range of 2.5-17.5 ?g/mL with r2=0.9998 (n=6). Limit of detection (LOD) and limit of quantification (LOQ) values were 0.0033 and 0.0102 ?g/mL for atropine sulphate. The validation study is carried out as per International Conference on Harmonization (ICH) guidelines. This method was successfully applied for estimation of atropine sulphate in pharmaceutical formulation.


Author(s):  
ANUJA SURYAWANSHI ◽  
AFAQUEANSARI ◽  
MALLINATH KALSHETTI

Objective: The present work is aimed to develop a simple, rapid, selective and economical UV spectrophotometric method for quantitative determination of Glipizideinbulk and pharmaceutical dosage form. Methods: In this method Dimethyl Form amide (DMF) was used as solvent, the absorption maxima was found to be275 nm in DMF. The developed method was validated for linearity, accuracy, precision, ruggedness, robustness, LOD and LOQ in accordance with the requirements of ICH guideline. Results: The linearity was found to be 10-60 µg/ml having linear equation y=0.017x-0.006 with correlation coefficient of 0.997. The% recovery was found to be in the range of 98.7-100%. The % RSD for intra-day and inter-day precision was found to be 0.569923 and 0.40169 respectively. The limit of detection (LOD) and limit of quantification (LOQ) was found to be3.06 µg/ml and 9.27 µg/ml respectively. Conclusion: The developed method was validated as per ICH Q2(R1) guidelines. The novel method is applicable for the analysis of bulk drug in its pharmaceutical dosage form.


Author(s):  
Ayya Rajendra Prasad ◽  
Jayanthi Vijaya Ratna

 Objective: The objective of this study was developed and validated a novel, specific, precise, and simple ultraviolet (UV)-spectrophotometric method for the estimation of norfloxacin present in taste masked drug-resin complex.Methods: UV-spectrophotometric determination was performed with ELICO SL 1500 UV-visible spectrophotometer using 0.1 N HCl as a medium. The spectrum of the standard solution was run from 200 to 400 nm range for the determination of absorption maximum (λ max). λ max of norfloxacin was found at 278 nm. The absorbance of standard solutions of 1, 2, 3, 4, and 5 μg/ml of drug solution was measured at an absorption maximum at 278 nm against the blank. Then, a graph was plotted by taking concentration on X-axis and absorbance on Y-axis which gave a straight line. Validation parameters such as linearity and range, selectivity and specificity, limit of detection (LOD) and limit of quantification (LOQ), accuracy, precision, and robustness were evaluated as per the International Conference on Harmonization (ICH) guidelines.Results: Linearity for the UV-spectrophotometric method was noted over a concentration range of 1–5 μg/ml with a correlation coefficient of 0.9995. The LOD and LOQ for norfloxacin were found at 0.39 μg/ml and 1.19 μg/ml, respectively. Accuracy was in between 99.00% and 99.17%. % relative standard deviation for repeatability, intraday precision, and interday precision was found to be 0.600, in between 0.291 and 0.410, and in between 0.682 and 1.439, respectively. The proposed UV spectrophotometric method is found to be robust.Conclusion: The proposed UV-spectrophotometric method was validated according to the ICH guidelines, and results and statistical parameters demonstrated that the developed method is sensitive, precise, reliable, and simple for the estimation of norfloxacin present in taste masked drug-resin complex.


Author(s):  
VEERASWAMI B ◽  
NAVEEN VMK

Objective: The present paper describes a simple, accurate, and precise reversed-phase high-performance liquid chromatography (HPLC) method for rapid and simultaneous quantification of dolutegravir (DTG) and rilpivirine (RPV) in bulk and pharmaceutical dosage form and rat plasma. Methods: The chromatographic separation was achieved on Phenomenex C18 (150x4.6mm, 5μm). Mobile phase contained a mixture of 0.1% Ortho phosphoric acid and acetonitrile in the rato of 60:40 v/v, flow rate 1.0ml/min and ultraviolet detection at 262nm. Results: The retention time of DTG and RPV was 4.35 min and 7.73 min, respectively. The proposed method shows a good linearity in the concentration range of 10–150 μg/ml for DTG and 5–75 μg/ml for RPV under optimized conditions. Precision and recovery study results are in between 98 and 102%. In the entire robustness conditions, percentage relative standard deviation is <2.0%. Degradation has minimum effect in stress condition and solutions are stable up to 24 h. DTG and RPV drugs are release 98% at 2 h in rat body. Conclusion: This method is validated for different analytical performance parameters like linearity. Precision, accuracy, limit of detection, limit of quantification, robustness, and pharmacokinetic study were determined according to the International Conference of Harmonization (ICH) Q2B guidelines. All the parameters of validation were found in the acceptance range of ICH guidelines. The same method is also applied for plasma samples study in bioanalytical work.


2010 ◽  
Vol 7 (2) ◽  
pp. 395-402
Author(s):  
Padmarajaiah Nagaraja ◽  
Ashwinee Kumar Shrestha

A spectrophotometric method has been proposed for the determination of four phenolic drugs; salbutamol, ritodrine, amoxicillin and isoxsuprine. The method is based on the oxidation of 2, 4- dinitrophenyl-hydrazine and coupling of the oxidized product with drugs to give intensely colored chromogen. Under the proposed optimum condition, beer’s law was obeyed in the concentration range of 2.5-17, 2-29, 4-33 and 5-30 μg/mL for salbutamol, ritodrine, amoxicillin and isoxsuprine respectively. The limit of detection (LOD) and limit of quantification (LOQ) were 0.2, 0.83, 0.09, 0.84 μg/mL and 0.66, 2.79, 0.3 and 2.81 μg/mL in the same order. No interference was observed from common pharmaceutical adjuvants. The ringbom plots and low relative standard deviation assert the applicability of this method. The suggested method was further applied for the determinations of drugs in commercial pharmaceutical dosage forms, which was compared statistically with reference methods by means oft- test andF- test and were found not to differ significantly at 95% confidence level. The procedure is characterized by its simplicity with accuracy and precision.


Sign in / Sign up

Export Citation Format

Share Document