scholarly journals Review on Polymer Based Nanoparticles for Increase the Bioavalibilty of Poorly Water Soluble Drug

Author(s):  
Karishma Mahajan ◽  
Nishant Thakur ◽  
. Simran

In this review study about the polymeric nanoparticles and how polymer based nanoparticles increase bioavailability of less water soluble drugs. Polymeric nanoparticles have a matrix of biodegradable and biocompatible polymers of synthetic and natural origin. Polymer based nanoparticles are very useful for increase the solubility of the poor water-soluble drugs by decrease the particles size. Polymeric nanoparticles are very useful for targeting the drug to the specific site. Polymeric nanoparticles are also used to maintain and control the release of the drug. In present review study on the type of polymer used for the preparation of the polymer based nanoparticles. The choice of method depends on a number of factors, such as, particles size, area of application and characterization of polymeric nanoparticles.

Author(s):  
HRISHAV DAS PURKAYASTHA ◽  
S. K. IMANUR HOSSIAN

Nanosuspension consists of the pure poorly water-soluble drug without any matrix material suspended in dispersion. The formulation as nanosuspension is an attractive and promising alternative to solve these problems. Nanosuspension technology solved the problem of drugs which are poorly aqueous soluble and less bioavailability. Stability and bioavailability of the drugs can be improved by Nanosuspension technology. Nanosuspensions are promising candidates that can be used for enhancing the dissolution of poorly water-soluble drugs. Preparation of Nanosuspension is simple and applicable to all drugs which are aqueous insoluble. Nanosuspensions are prepared by using wet mill, high-pressure homogenizer, emulsion‐solvent evaporation, melt emulsification method and supercritical fluid techniques. Nanosuspension can be prepared by using stabilizers, organic solvents and other additives such as buffers, salts, polyols, osmogent and cryoprotectant. Nanosuspensions can be delivered by oral,parenteral, pulmonary and ocular routes. Nanosuspensions can also be used for targeted drug delivery when incorporated in the ocular inserts and mucoadhesive hydrogels.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 692 ◽  
Author(s):  
Hui-Won Cho ◽  
Seung-Hoon Baek ◽  
Beom-Jin Lee ◽  
Hyo-Eon Jin

Amorphous solid dispersions (ASDs) improve the oral delivery of poorly water-soluble drugs. ASDs of olanzapine (OLZ), which have a high melting point and low solubility, are performed using a complicated process. Three-dimensional (3D) printing based on hot-melt pneumatic extrusion (HMPE) is a simplified method for producing ASDs. Unlike general 3D printing, printlet extrusion is possible without the preparation of drug-loaded filaments. By heating powder blends, direct fused deposition modeling (FDM) printing through a nozzle is possible, and this step produces ASDs of drugs. In this study, we developed orodispersible films (ODFs) loaded with OLZ as a poorly water-soluble drug. Various ratios of film-forming polymers and plasticizers were investigated to enhance the printability and optimize the printing temperature. Scanning electron microscopy (SEM) showed the surface morphology of the film for the optimization of the polymer carrier ratios. Differential scanning calorimetry (DSC) was used to evaluate thermal properties. Powder X-ray diffraction (PXRD) confirmed the physical form of the drug during printing. The 3D printed ODF formulations successfully loaded ASDs of OLZ using HMPE. Our ODFs showed fast disintegration patterns within 22 s, and rapidly dissolved and reached up to 88% dissolution within 5 min in the dissolution test. ODFs fabricated using HMPE in a single process of 3D printing increased the dissolution rates of the poorly water-soluble drug, which could be a suitable formulation for fast drug absorption. Moreover, this new technology showed prompt fabrication feasibility of various formulations and ASD formation of poorly water-soluble drugs as a single process. The immediate dissolution within a few minutes of ODFs with OLZ, an atypical antipsychotic, is preferred for drug compliance and administration convenience.


2007 ◽  
Vol 8 (2) ◽  
pp. E18-E24 ◽  
Author(s):  
Tejal J. Shah ◽  
Avani F. Amin ◽  
Jolly R. Parikh ◽  
Rajesh H. Parikh

2020 ◽  
Vol 10 (1) ◽  
pp. 173-177 ◽  
Author(s):  
, Ikram ◽  
Kapil Kumar

Solid dispersion is a technique which is widely and successfully applied to improve the solubility, dissolution rates and consequently the bioavailability of poorly soluble drugs. Dispersion of one or more active ingredients (hydrophobic) is done with an inert carrier (hydrophilic) at solid-state prepared by fusion method, solvent, and melting solvent method. In this review article, we have focused on the methods of preparation, advantages, disadvantages and characterization of the solid dispersions. Keywords: Solid dispersion; dissolution; solubility.


Sign in / Sign up

Export Citation Format

Share Document