scholarly journals Design of Lipid Nanoparticles Containing Fenugreek Seed Extract

Author(s):  
P. Ananth ◽  
Marina Koland ◽  
Sridhar Deshpande ◽  
G. S. Mahendra

Background: The main purpose of this study was to maximize the efficacy of fenugreek seed extract by loading it in an optimised solid lipid nanoparticles (SLNs) formula. Methods: To achieve an effective extraction method, preliminary studies were carried out to confirm the extract, and the extract was standardised using trigonelline. The influence of independent variables lipid concentration (X1), surfactant concentration (X2), and cosurfactant concentration (X3) on dependent variables particle size (Y1) and entrapment efficiency (Y2) was also studied and optimised using the Box–Behnken design. Melt emulsification followed by ultrasonication was used to prepare SLN formulations. To understand the effect of independent variables on the dependent quality parameters, response surface plots and mathematical equations were produced. Results: The results confirmed that soxhalation was the most suitable method for extraction of fenugreek seeds, confirmed by standardization. Further optimization revealed that particle sizes ranged from 193.4 to 312.3 nm, with entrapment efficiencies ranging from 61.2 to 74.32 percent. This implies that the developed formulations can be used for further in vitro and in vivo characterizations.

Author(s):  
P. Ananth ◽  
Marina Koland

Background: Alopecia, a chronic dermatological inflammatory condition affecting the hair follicles. Conventional treatments are associated with the risk of serious side effects. The stratum corneum limits the percutaneous absorption of drugs. Hence, the development of novel herbal formulations for topical delivery has been the target, with the enhancement of their therapeutic efficacy and safety of use. Aims: To formulate and characterize Fenugreek seed extract loaded solid lipid nanoparticles carrier for the management of Alopecia to reduce the systemic side effects. Methodology: Fenugreek seed extract loaded solid lipid nanoparticles (SLN) were prepared by melt emulsification accompanied by probe sonication. The formulation was prepared using GMS, Tween 80, and Soya lecithin as Lipid, Surfactant, and Co-Surfactant. The SLN was incorporated into carbapol 934 dispersion to convert it into a gel. The SLN formulation was evaluated for size, Polydispersity Index, Zeta Potential, Entrapment efficiency, Transmission Electron Microscopy. After that, the SLN gel was examined for Spreadability, Extrudabilty, Viscosity, In vitro drug release, Ex vivo permeation, and Skin deposition studies. Results: The formulated Fenugreek seed extract loaded showed a particle size of 223.36 nm with a narrow PDI of 0.313. Entrapment efficiency revealed that 74.56±0.12% of the drug was entrapped. Transmission electron microscopy images confirmed the spherical nature of the SLN. The extended-release pattern of the formulated SLN for 24h was observed in the in vitro release studies and followed Higuchi model(R2=0.9964). Ex vivo permeability showed a 72.05±0.15% deposition of Fenugreek seed extract loaded SLN. The formulation was stable for three months without significant changes. Conclusion: Fenugreek seed extract loaded NLC demonstrated enhanced permeation, improved skin retention, and extended release compared to conventional gel. The developed formulation would be further used for in vivo studies and by seeing above results it can be an alternative for Alopecia in the future.


2014 ◽  
Vol 1061-1062 ◽  
pp. 359-368 ◽  
Author(s):  
Mei Ling Tang ◽  
Li Hua Chen ◽  
Dong Sheng Zhou ◽  
Wei Feng Zhu ◽  
Yong Mei Guan ◽  
...  

A three-factor three-level Box-Behnken design(BBD) was employed to optimize capsaicin-loaded nanoparticles(Cap-NPs), and its properties in vitro and in vivo were evaluated. Particle size, morphological characteristics, entrapment efficiency of Cap-NPs were investigated respectively by Zetasizer, H7000 TEM and HPLC. Release, skin permeation and skin irritation test were investigated on mouse and rabbits. The predicted values of Cap-NPs were 94.50±6.33% for entrapment efficiency(EE) and 170.30±7.81 nm for particle mean diameter(PMD) under optimal conditions which were 346.33 bar (homogenization pressure, X1), 4.67 min(homogenization time, X2), and 15421.42 rpm (shear rate, X3). The in vitro permeation study showed that capsaicin permeability in NPs-gel was a 2.80-fold greater flux values than conventional ointment after 24 h. Cap-NPs-gel produce no observable skin irritation in rabbits within 72h. The optimized Cap-NPs-gel would be a good candidate for transdermal delivery.


Author(s):  
B Figer ◽  
R Pissurlenkar ◽  
Premlata Ambre ◽  
Samidha Kalekar ◽  
Renuka Munshi ◽  
...  

Author(s):  
Shrishti Namdev ◽  
Kishore Gujar ◽  
Satish Mandlik ◽  
Preeti Jamkar

The objective of this study is to prepare and characterise repaglinide niosomes using the Factorial Design strategy.Repaglinide is a potent second-generation oral hypoglycemic agent and has short half-life of 1 hour and oral bioavailability of 50%. Preparing Niosomal drugdelivery of repaglinide may increase its bioavailability which would lead to better therapeutic effects, reduce the frequency of dosing from twice a day to once a day and decrease side effects. The preliminary study was carried out for selection of surfactant and method of preparation based on least particle size and highest entrapment efficiency. For niosome preparation, organic solvent injection method was selected and span 60, cholesterol were selected as variable. A32 factorial design was used to optimize the effect of amounts of span 60(X1) and cholesterol (X2) which were the independent variables. Particle size (Y1) and entrapment efficiency (Y2) were the dependent variables. Relation between the dependent and independent variables were drawn out from the mathematical equations and response surface plots.Statistical analysis was performed using ANOVA which was found to be significant and quadratic equation was obtained by MLRA. The particle size was found to be in range of 144-497 nm and entrapment efficiency between 54-88%. Scanning electron microscopy indicated the spherical shape of the niosomes and formation of vesicle. Zeta potential analysis showed negatively charged surface with value of-36.7 mV. In vitro drug release profile showed that drug released fast initially followed by a slow release. In vivo pharmacokinetic study revealed that the niosomal preparation showed significant decrease in blood glucose level when compared to free repaglinide. The developed niosomal system also has potential of maintaining therapeutic level of RPG for longer period of time.Thus,the niosomes could be promising carriers for delivery ofrepaglinide with increased 


Author(s):  
CHAITALI SURVE ◽  
RUCHI SINGH ◽  
ANANYA BANERJEE ◽  
SRINIVAS PATNAIK ◽  
SUPRIYA SHIDHAYE

Objective: In the current study, the Quality by Design method was utilized for the formulation of solid lipid nanoparticles of Methotrexate (MTX SLNs). Methods: MTX SLNs formulated by melt emulsification method were studied for the effect of independent variables viz. concentration of lipid and surfactants on quality attributes viz. particle size, polydispersity index, and entrapment efficiency of SLNs using 32 factorial design. Results: The optimal formulation was spherical, had a particle size of 147.6±4.1 nm (z-average), a polydispersity index of 0.296±0.058, a zeta potential of −19±0.98 mV, encapsulation efficiency of 98.7±1.55%, and a cumulative drug release of 95.59±0.918% in 5 h. Conclusion: The  in vitro and in vivo studies revealed that SLNs provide a promising oral delivery system to improve the bioavailability of MTX.


2019 ◽  
Vol 7 (5) ◽  
pp. 375-388 ◽  
Author(s):  
Vaishali M. Gambhire ◽  
Makarand S. Gambhire ◽  
Nisharani S. Ranpise

Background: Dronedarone HCl (DRD), owing to its poor aqueous solubility and extensive presystemic metabolism shows low oral bioavailability of about 4% without food, which increases to approximately 15% when administered with a high fat meal. Objective: Solid lipid nanoparticles (SLN) were designed with glyceryl monstearate (GMS) in order to improve oral bioavailability of DRD. Methods: Hot homogenization followed by probe sonication was used to prepare SLN dispersions. Box-Behnken design was used to optimize manufacturing conditions. SLN were characterized for particle size, zeta potential, entrapment efficiency, physical state and in vitro drug release. Pharmacokinetics and intestinal uptake study of dronedarone HCl loaded solid lipid nanoparticles (DRD-SLN) in the presence and absence of endocytic uptake inhibitor, chlorpromazine (CPZ) was performed with conscious male Wistar rats. Results: Optimized formulation of SLN showed particle size of 233 ± 42 nm and entrapment efficiency of 87.4 ± 1.29%. Results of pharmacokinetic studies revealed enhancement of bioavailability of DRD by 2.68 folds from SLN as compared to DRD suspension. Significantly reduced bioavailability of DRD-SLNs in the presence of chlorpromazine, demonstrated the role of endocytosis in uptake of SLN formulation. Conclusion: These results indicated that dronedarone HCl loaded SLN could potentially be exploited as a delivery system for improving oral bioavailability by minimizing first pass metabolism.


Author(s):  
Kishan V ◽  
Usha Kiranmai Gondrala ◽  
Narendar Dudhipala

Felodipine is an antihypertensive drug with poor oral bioavailability due to the first pass metabolism. For improving the oral bioavailability, felodipine loaded solid lipid nanoparticles (SLNs) were developed using trimyristin, tripalmitin and glyceryl monostearate. Poloxamer 188 was used as surfactant. Lipid excipient compatibilities were confirmed by differential scanning calorimetry. SLN dispersions were prepared by hot homogenization of molten lipids and aqueous phase followed by ultrasonication at a temperature, above the melting point. SLNs were characterized for particle size, zeta potential, drug content, entrapment efficiency and crystallinity of lipid and drug. In vitro release studies were performed in 0.1N HCl and phosphate buffer of pH 6.8 using dialysis method. Pharmacokinetics of felodipine-SLNs after oral admini-stration in male Wistar rats was studied. The bioavailability of felodipine was increased by 1.75 fold when compared to that of a felodipine suspension.  


Sign in / Sign up

Export Citation Format

Share Document