scholarly journals Topical Delivery of Fenugreek Seed Extract Loaded Solid Lipid Nanoparticles Based Hydrogels for Alopecia

Author(s):  
P. Ananth ◽  
Marina Koland

Background: Alopecia, a chronic dermatological inflammatory condition affecting the hair follicles. Conventional treatments are associated with the risk of serious side effects. The stratum corneum limits the percutaneous absorption of drugs. Hence, the development of novel herbal formulations for topical delivery has been the target, with the enhancement of their therapeutic efficacy and safety of use. Aims: To formulate and characterize Fenugreek seed extract loaded solid lipid nanoparticles carrier for the management of Alopecia to reduce the systemic side effects. Methodology: Fenugreek seed extract loaded solid lipid nanoparticles (SLN) were prepared by melt emulsification accompanied by probe sonication. The formulation was prepared using GMS, Tween 80, and Soya lecithin as Lipid, Surfactant, and Co-Surfactant. The SLN was incorporated into carbapol 934 dispersion to convert it into a gel. The SLN formulation was evaluated for size, Polydispersity Index, Zeta Potential, Entrapment efficiency, Transmission Electron Microscopy. After that, the SLN gel was examined for Spreadability, Extrudabilty, Viscosity, In vitro drug release, Ex vivo permeation, and Skin deposition studies. Results: The formulated Fenugreek seed extract loaded showed a particle size of 223.36 nm with a narrow PDI of 0.313. Entrapment efficiency revealed that 74.56±0.12% of the drug was entrapped. Transmission electron microscopy images confirmed the spherical nature of the SLN. The extended-release pattern of the formulated SLN for 24h was observed in the in vitro release studies and followed Higuchi model(R2=0.9964). Ex vivo permeability showed a 72.05±0.15% deposition of Fenugreek seed extract loaded SLN. The formulation was stable for three months without significant changes. Conclusion: Fenugreek seed extract loaded NLC demonstrated enhanced permeation, improved skin retention, and extended release compared to conventional gel. The developed formulation would be further used for in vivo studies and by seeing above results it can be an alternative for Alopecia in the future.

Author(s):  
V K Verma ◽  
Ram A

 Solid lipid nanoparticles (SLNs) of piroxicam where produced by solvent emulsification diffusion method in a solvent saturated system. The SLNs where composed of tripamitin lipid, polyvinyl alcohol (PVAL) stabilizer, and solvent ethyl acetate. All the formulation were subjected to particle size analysis, zeta potential, drug entrapment efficiency, percent drug loading determination and in-vitro release studies. The SLNs formed were nano-size range with maximum entrapment efficiency. Formulation with 435nm in particle size and 85% drug entrapment was subjected to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for surface morphology, differential scanning calorimetry (DSC) for thermal analysis and short term stability studies. SEM and TEM confirm that the SLNs are nanometric size and circular in shape. The drug release behavior from SLNs suspension exhibited biphasic pattern with an initial burst and prolong release over 24 h. 


Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


2012 ◽  
Vol 2 (1) ◽  
pp. 8 ◽  
Author(s):  
Vandita Kakkar ◽  
Indu Pal Kaur

Sesamol loaded solid lipid nanoparticles (SSLNs) were prepared with the aim of minimizing its distribution to tissues and achieving its targeting to the brain. Three scale-up batches (100x1 L) of S-SLNs were prepared using a microemulsification technique and all parameters were statistically compared with the small batch (1x;10 mL). S-SLNs with a particle size of less than 106 nm with a spherical shape (transmission electron microscopy) were successfully prepared with a total drug content and entrapment efficiency of 94.26±2.71% and 72.57±5.20%, respectively. Differential scanning calorimetry and infrared spectroscopy confirmed the formation of lipidic nanoparticles while powder X-ray diffraction revealed their amorphous profile. S-SLNs were found to be stable for three months at 5±3°C in accordance with International Conference on Harmonisation guidelines. The SLN preparation process was successfully scaled-up to a 100x batch on a laboratory scale. The procedure was easy to perform and allowed reproducible SLN dispersions to be obtained.


Author(s):  
Jayachandra Reddy Peddappi Reddigari ◽  
Yerikala Ramesh ◽  
Chandrasekhar B. Kothapalli

The present research work “Formulation and Evaluation of In-situ gels enriched with Tropicamide loaded solid lipid nanoparticles”. To overcome the problems of side effects and to increase the bioavailability of tropicamide loaded solid lipid nanoparticles are containing with suitable lipids (glycerin trimyristate, Tristearin, Phosphatidylcholine & soyabean lecithin) with stabilizers (poloxamer 188) and surfactant like polysorbate 80. The interaction between drug, lipids & polymer by performing with FTIR no incompatibility with each other. The particle morphology was carried out by SEM & AFM in solid lipid nanoparticle formulation. The particle size was ranges from 213.6 ± 2.16nm to 538.0 ± 6.53 nm. The zeta potential ranges form -18.3mV to 25.6mV. The entrapment efficiency of free tropicamide was ranges from 74.13 % to 90.17%. The drug content was ranges from 0.212mg/ml to 0.912mg/ml. The SLN formulations must be transparent white colour and semi solid consistency. The pH 7.0 to 8.0 in all formulation. The gelling strength of gels TSLNGF1 to TSLNGF12 was ranges from 72 ± 1 sec to 117 ± 2 sec. The bio adhesive force was ranges from 10.12 ±1.01 dynes/cm2 to 23.12 ± 1.91 dynes/cm2. The viscosity of prepared formulation ranges from 415 ± 1.94 cps to 652 ± 1.41 cps. The spread ability studies of all formulation were ranges from 09 gms/sec to 18 gms/sec. The Accelerated stability the formulations does not undergo any chemical Changes. In vitro Franz’s diffusion studies of SLN enriched in gels TSLNGF1 to TSLNGF12 among the various formulation best formulations was TSLNGF6; its follows first order kinetics. Keywords: Solid Lipid Nanoparticles; Tropicamide; In- situ gels; In vitro diffusion studies


Author(s):  
Kumara Swamy S ◽  
Ramesh Alli

The purpose of this study was to develop and evaluate irbesartan (IS) loaded solid lipid nanoparticles (SLNs; IS-SLNs) that might enhance the oral bioavailability of IS. IS, an angiotensin-receptor antagonist, used to treat hypertension. However, poor aqueous solubility and poor oral bioavailability has limited therapeutic applications of IS. Components of the SLNs include either of trimyristin/tripalmitin/tristearin/trilaurate/stearic acid/beeswax, and surfactants (Poloxamer 188 and soylecithin). The IS-SLNs were prepared by hot homogenization followed by ultrasonication method and evaluated for particle size, poly dispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE), drug content and in vitro drug release. The physical stability of optimized formulation was studied at refrigerated and room temperature for two months. The optimized IS-SLN formulation (F4) had a mean diameter of about 217.6±3.62 nm, PDI of 0.163±0.032, ZP of -28.5±4.12, assay of 99.8±0.51 and EE of 93.68±2.47%. The formulation showed sustained drug release compared with control formulation over 24 h. Optimized formulation was found to be stable over two months. IS-SLN showed nearly spherical in shape using and converted to amorphous form by DSC. Thus, the results conclusively demonstrated SLNs could be considered as an alternative delivery system for the oral bioavailability enhancement of IS.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Anand Kumar Kushwaha ◽  
Parameswara Rao Vuddanda ◽  
Priyanka Karunanidhi ◽  
Sanjay Kumar Singh ◽  
Sanjay Singh

Raloxifene hydrochloride (RL-HCL) is an orally selective estrogen receptor modulator (SERM) with poor bioavailability of nearly 2% due to its poor aqueous solubility and extensive first pass metabolism. In order to improve the oral bioavailability of raloxifene, raloxifene loaded solid lipid nanoparticles (SLN) have been developed using Compritol 888 ATO as lipid carrier and Pluronic F68 as surfactant. Raloxifene loaded SLN were prepared by solvent emulsification/evaporation method, and different concentrations of surfactant, and homogenization speed were taken as process variables for optimization. SLN were characterized for particle size, zeta potential, entrapment efficiency, surface morphology, and crystallinity of lipid and drug.In vitrodrug release studies were performed in phosphate buffer of pH 6.8 using dialysis bag diffusion technique. Particle sizes of all the formulations were in the range of 250 to 1406 nm, and the entrapment efficiency ranges from 55 to 66%. FTIR and DSC studies indicated no interaction between drug and lipid, and the XRD spectrum showed that RL-HCL is in amorphous form in the formulation.In vitrorelease profiles were biphasic in nature and followed Higuchi model of release kinetics. Pharmacokinetics of raloxifene loaded solid lipid nanoparticles after oral administration to Wistar rats was studied. Bioavailability of RL-HCL loaded SLN was nearly five times than that of pure RL-HCL.


2020 ◽  
Vol 11 (1) ◽  
pp. 204-204
Author(s):  
Solmaz Ghaffari ◽  
Faezeh Alihosseini ◽  
Seyed Mahdi Rezayat Sorkhabadi ◽  
Sepideh Arbabi Bidgoli ◽  
Seyyedeh Elaheh Mousavi ◽  
...  

Author(s):  
Botre P.P ◽  
Maniyar M.G.

The objective of this study was to develop suitable solid lipid nanoparticles for topical delivery of Bifonazole. Bifonazole is an imidazole antifungal drug used in form of ointments. It was patented in 1974 and approved for medical use in 1983. Bifonazole having broad spectrum activity against dermatophytes, moulds, yeasts, fungi and some gram positive bacteria. BFZ SLNs systems were developed by melt emulsification followed by solvent evaporation technique using Compritol 888ATO (Glyceryl behenate) as a solid lipid and Tween 80 as a surfactant. Developed SLNs were evaluated for particle size, polydispersity index (PI), entrapment efficiency (EE) and drug release profiles. Process and formulation parameters were optimized. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies were carried out on SLNs to mark the changes in the drug and lipid modifications. The BFZ SLNs based gels were prepared using Carbopol 940 as a gelling agent. The SLNs based gels were evaluated for rheological parameters, in vitro drug release and permeation studies. In vitro antifungal study suggested that the SLNs based gel was more effective in inhibiting growth of Candida albicans. Thus the study concludes that SLNs based gel of BFZ gives a sustained release profile of BFZ and has the potential for treatment of topical fungal infections.


INDIAN DRUGS ◽  
2019 ◽  
Vol 56 (08) ◽  
pp. 38-48
Author(s):  
S. V Shinde ◽  
S Nikam ◽  
P Raut ◽  
M. K. Ghag ◽  

In the present research work, celecoxib (CXB) loaded solid lipid nanoparticles (SLNs) were prepared using the probe sonication method, wherein Glyceryl monostearate and Tween 80 were used as solid lipid and surfactant, respectively. To obtain the statistically optimized batch, 32 factorial design was applied. The optimized batch was characterized physicochemically and evaluated through DSC, SEM and XRD studies. The mean particle size of the optimized batch was found to be 135.41± 0.24 nm with a mean % entrapment efficiency of 80 ± 1.69%. The optimized batch was further lyophilized and dispersed into 1% w/v Carbopol 934P to form a gel. Prepared gel was further evaluated for in vitro drug release, occlusivity, ex vivo permeability, local toxicity, in vivo anti-inflammatory activity and accelerated stability study. The study resulted in stable, safe and prolonged anti-inflammatory activity with quick onset of action. Hence, celecoxib loaded solid lipid nanoparticles can be considered as promising alternative to conventional topical systems.


Sign in / Sign up

Export Citation Format

Share Document