scholarly journals STUDY ON VORTEX CURRENT IN STRAIT WITH REMOTE-SENSING

1980 ◽  
Vol 1 (17) ◽  
pp. 157 ◽  
Author(s):  
Sotoaki Onishi ◽  
Tsukasa Nishimura

With rapid increases of industrial activity in present time, water pollution in the coastal environment has "become an urgent problem to cope with. This problem is especially serious in enclosed bays or inland seas. Hydrodynamic character of the strait connecting the inland sea to the open ocean must be understood well in order to analyse the diffusion of pollutants in the Inland sea, because its character determine boundary conditions in the mathematical models of the water pollution problem. So far however, it is seemed that the main efforts exerted by coastal engineers have concentrated mainly on the development of mathematical models, lacking satisfactory knowledge of the boundary conditions through field measurements. One reason of this state is resulted from the fact that the relating phenomena in the field are of too large scale, in general, to perform the field measurements. Connecting with this point, the authors present in this paper, that remote-sensing technology is very useful to get information of the hydrodynaniical phenomena occurring in the water body around the strait. To show the above, the authors selected as an object of the study , Naruto Strait in the Seto Inland Sea, which is world famous for the existence of rapid tidal currents and dynamic vortices. Remote-sensing data both from the airplanes and from a space satellite Landsat are analysed with the aid of theoretical considerations and hydraulic mo-del tests to disclose the behavior of the vortices of various scales and the roles of them in the sea water mixing phenomena at the strait.

2021 ◽  
Vol 13 (19) ◽  
pp. 3970
Author(s):  
Huan Zhao ◽  
Junsheng Li ◽  
Xiang Yan ◽  
Shengzhong Fang ◽  
Yichen Du ◽  
...  

Some lakes in China have undergone serious eutrophication, with cyanobacterial blooms occurring frequently. Dynamic monitoring of cyanobacterial blooms is important. At present, the traditional lake-survey-based cyanobacterial bloom monitoring is spatiotemporally limited and requires considerable human and material resources. Although satellite remote sensing can rapidly monitor large-scale cyanobacterial blooms, clouds and other factors often mean that effective images cannot be obtained. It is also difficult to use this method to dynamically monitor and manage aquatic environments and provide early warnings of cyanobacterial blooms in lakes and reservoirs. In contrast, ground-based remote sensing can operate under cloud cover and thus act as a new technical method to dynamically monitor cyanobacterial blooms. In this study, ground-based remote-sensing technology was applied to multitemporal, multidirectional, and multiscene monitoring of cyanobacterial blooms in Dianchi Lake via an area array multispectral camera mounted on a rotatable cloud platform at a fixed station. Results indicate that ground-based imaging remote sensing can accurately reflect the spatiotemporal distribution characteristics of cyanobacterial blooms and provide timely and accurate data for salvage treatment and early warnings. Thus, ground-based multispectral remote-sensing data can operationalize the dynamic monitoring of cyanobacterial blooms. The methods and results from this study can provide references for monitoring such blooms in other lakes.


2019 ◽  
Vol 11 (5) ◽  
pp. 595 ◽  
Author(s):  
Han Liu ◽  
Randy Dahlgren ◽  
Royce Larsen ◽  
Scott Devine ◽  
Leslie Roche ◽  
...  

Rangelands cover ~23 million hectares and support a $3.4 billion annual cattle industry in California. Large variations in forage production from year to year and across the landscape make grazing management difficult. We here developed optimized methods to map high-resolution forage production using multispectral remote sensing imagery. We conducted monthly flights using a Small Unmanned Aerial System (sUAS) in 2017 and 2018 over a 10-ha deferred grazing rangeland. Daily maps of NDVI at 30-cm resolution were first derived by fusing monthly 30-cm sUAS imagery and more frequent 3-m PlanetScope satellite observations. We estimated aboveground net primary production as a product of absorbed photosynthetically active radiation (APAR) derived from NDVI and light use efficiency (LUE), optimized as a function of topography and climate stressors. The estimated forage production agreed well with field measurements having a R2 of 0.80 and RMSE of 542 kg/ha. Cumulative NDVI and APAR were less correlated with measured biomass ( R 2 = 0.68). Daily forage production maps captured similar seasonal and spatial patterns compared to field-based biomass measurements. Our study demonstrated the utility of aerial and satellite remote sensing technology in supporting adaptive rangeland management, especially during an era of climatic extremes, by providing spatially explicit and near-real-time forage production estimates.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zheng He ◽  
Gang Ye ◽  
Hui Jiang ◽  
Youming Fu

Environmental protection is a fundamental policy in many countries, where the vehicle emission pollution turns to be outstanding as a main component of pollutions in environmental monitoring. Remote sensing technology has been widely used on vehicle emission detection recently and this is mainly due to the fast speed, reality, and large scale of the detection data retrieved from remote sensing methods. In the remote sensing process, the information about the fuel type and registration time of new cars and nonlocal registered vehicles usually cannot be accessed, leading to the failure in assessing vehicle pollution situations directly by analyzing emission pollutants. To handle this problem, this paper adopts data mining methods to analyze the remote sensing data to predict fuel type and registration time. This paper takes full use of decision tree, random forest, AdaBoost, XgBoost, and their fusion models to successfully make precise prediction for these two essential information and further employ them to an essential application: vehicle emission evaluation.


2012 ◽  
Vol 518-523 ◽  
pp. 5697-5703
Author(s):  
Zhao Yan Liu ◽  
Ling Ling Ma ◽  
Ling Li Tang ◽  
Yong Gang Qian

The aim of this study is to assess the capability of estimating Leaf Area Index (LAI) from high spatial resolution multi-angular Vis-NIR remote sensing data of WiDAS (Wide-Angle Infrared Dual-mode Line/Area Array Scanner) imaging system by inverting the coupled radiative transfer models PROSPECT-SAILH. Based on simulations from SAILH canopy reflectance model and PROSPECT leaf optical properties model, a Look-up Table (LUT) which describes the relationship between multi-angular canopy reflectance and LAI has been produced. Then the LAI can be retrieved from LUT by directly matching canopy reflectance of six view directions and four spectral bands with LAI. The inversion results are validated by field data, and by comparing the retrieval results of single-angular remote sensing data with multi-angular remote sensing data, we can found that the view angle takes the obvious impact on the LAI retrieval of single-angular data and that high accurate LAI can be obtained from the high resolution multi-angular remote sensing technology.


2019 ◽  
Vol 221 ◽  
pp. 695-706 ◽  
Author(s):  
Jianbo Qi ◽  
Donghui Xie ◽  
Tiangang Yin ◽  
Guangjian Yan ◽  
Jean-Philippe Gastellu-Etchegorry ◽  
...  

2014 ◽  
Vol 11 (23) ◽  
pp. 6827-6840 ◽  
Author(s):  
M. Réjou-Méchain ◽  
H. C. Muller-Landau ◽  
M. Detto ◽  
S. C. Thomas ◽  
T. Le Toan ◽  
...  

Abstract. Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8–50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mg ha–1) at spatial scales ranging from 5 to 250 m (0.025–6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20–400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial "dilution" bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise.


2019 ◽  
Vol 147 (12) ◽  
pp. 4325-4343 ◽  
Author(s):  
Cornelius Hald ◽  
Matthias Zeeman ◽  
Patrick Laux ◽  
Matthias Mauder ◽  
Harald Kunstmann

Abstract A computationally efficient and inexpensive approach for using the capabilities of large-eddy simulations (LES) to model small-scale local weather phenomena is presented. The setup uses the LES capabilities of the Weather Research and Forecasting Model (WRF-LES) on a single domain that is directly driven by reanalysis data as boundary conditions. The simulated area is an example for complex terrain, and the employed parameterizations are chosen in a way to represent realistic conditions during two 48-h periods while still keeping the required computing time around 105 CPU hours. We show by evaluating turbulence characteristics that the model results conform to results from typical LES. A comparison with ground-based remote sensing data from a triple Doppler-lidar setup, employed during the “ScaleX” campaigns, shows the grade of adherence of the results to the measured local weather conditions. The representation of mesoscale phenomena, including nocturnal low-level jets, strongly depends on the temporal and spatial resolution of the meteorological boundary conditions used to drive the model. Small-scale meteorological features that are induced by the terrain, such as katabatic flows, are present in the simulated output as well as in the measured data. This result shows that the four-dimensional output of WRF-LES simulations for a real area and real episode can be technically realized, allowing a more comprehensive and detailed view of the micrometeorological conditions than can be achieved with measurements alone.


RBRH ◽  
2019 ◽  
Vol 24 ◽  
Author(s):  
Hugo de Oliveira Fagundes ◽  
Fernando Mainardi Fan ◽  
Rodrigo Cauduro Dias de Paiva

ABSTRACT Calibration and validation are two important steps in the application of sediment models requiring observed data. This study aims to investigate the potential use of suspended sediment concentration (SSC), water quality and remote sensing data to calibrate and validate a large-scale sediment model. Observed data from across 108 stations located in the Doce River basin was used for the period between 1997-2010. Ten calibration and validation experiments using the MOCOM-UA optimization algorithm coupled with the MGB-SED model were carried out, which, over the same period of time, resulted in 37 calibration and 111 validation tests. The experiments were performed by modifying metrics, spatial discretization, observed data and parameters of the MOCOM-UA algorithm. Results generally demonstrated that the values of correlation presented slight variations and were superior in the calibration step. Additionally, increasing spatial discretization or establishing a background concentration for the model allowed for improved results. In a station with high quantity of SSC data, calibration improved the ENS coefficient from -0.44 to 0.44. The experiments showed that the spectral surface reflectance, total suspended solids and turbidity data have the potential to enhance the performance of sediment models.


Sign in / Sign up

Export Citation Format

Share Document