scholarly journals Large-Eddy Simulations of Real-World Episodes in Complex Terrain Based on ERA-Reanalysis and Validated by Ground-Based Remote Sensing Data

2019 ◽  
Vol 147 (12) ◽  
pp. 4325-4343 ◽  
Author(s):  
Cornelius Hald ◽  
Matthias Zeeman ◽  
Patrick Laux ◽  
Matthias Mauder ◽  
Harald Kunstmann

Abstract A computationally efficient and inexpensive approach for using the capabilities of large-eddy simulations (LES) to model small-scale local weather phenomena is presented. The setup uses the LES capabilities of the Weather Research and Forecasting Model (WRF-LES) on a single domain that is directly driven by reanalysis data as boundary conditions. The simulated area is an example for complex terrain, and the employed parameterizations are chosen in a way to represent realistic conditions during two 48-h periods while still keeping the required computing time around 105 CPU hours. We show by evaluating turbulence characteristics that the model results conform to results from typical LES. A comparison with ground-based remote sensing data from a triple Doppler-lidar setup, employed during the “ScaleX” campaigns, shows the grade of adherence of the results to the measured local weather conditions. The representation of mesoscale phenomena, including nocturnal low-level jets, strongly depends on the temporal and spatial resolution of the meteorological boundary conditions used to drive the model. Small-scale meteorological features that are induced by the terrain, such as katabatic flows, are present in the simulated output as well as in the measured data. This result shows that the four-dimensional output of WRF-LES simulations for a real area and real episode can be technically realized, allowing a more comprehensive and detailed view of the micrometeorological conditions than can be achieved with measurements alone.

2016 ◽  
Vol 31 (2) ◽  
pp. 446-461 ◽  
Author(s):  
Xingran Liu ◽  
Yanjun Shen ◽  
Hongjun Li ◽  
Ying Guo ◽  
Hongwei Pei ◽  
...  

2014 ◽  
Vol 7 (7) ◽  
pp. 2337-2360 ◽  
Author(s):  
E. Sepúlveda ◽  
M. Schneider ◽  
F. Hase ◽  
S. Barthlott ◽  
D. Dubravica ◽  
...  

Abstract. We present lower/middle tropospheric column-averaged CH4 mole fraction time series measured by nine globally distributed ground-based FTIR (Fourier transform infrared) remote sensing experiments of the Network for the Detection of Atmospheric Composition Change (NDACC). We show that these data are well representative of the tropospheric regional-scale CH4 signal, largely independent of the local surface small-scale signals, and only weakly dependent on upper tropospheric/lower stratospheric (UTLS) CH4 variations. In order to achieve the weak dependency on the UTLS, we use an a posteriori correction method. We estimate a typical precision for daily mean values of about 0.5% and a systematic error of about 2.5%. The theoretical assessments are complemented by an extensive empirical study. For this purpose, we use surface in situ CH4 measurements made within the Global Atmosphere Watch (GAW) network and compare them to the remote sensing data. We briefly discuss different filter methods for removing the local small-scale signals from the surface in situ data sets in order to obtain the in situ regional-scale signals. We find good agreement between the filtered in situ and the remote sensing data. The agreement is consistent for a variety of timescales that are interesting for CH4 source/sink research: day-to-day, monthly, and inter-annual. The comparison study confirms our theoretical estimations and proves that the NDACC FTIR measurements can provide valuable data for investigating the cycle of CH4.


2021 ◽  
Vol 13 (22) ◽  
pp. 4709
Author(s):  
Haiyang Shi ◽  
Qun Pan ◽  
Geping Luo ◽  
Olaf Hellwich ◽  
Chunbo Chen ◽  
...  

Understanding the impacts of environmental factors on spatial–temporal and large-scale rodent distribution is important for rodent damage prevention. Investigating rat hole density (RHD) is one of the most effective methods to obtain the intensity of rodent damage. However, most of the previous field surveys or UAV-based remote sensing methods can only evaluate small-scale RHD and its influencing factors. However, these studies did not consider large-scale temporal and spatial heterogeneity. Therefore, we collected small-scale and in situ measurement records of RHD on the northern slope of the Tien Shan Mountains in Xinjiang (NTXJ), China, from 1982 to 2015, and then used correlation analysis and Bayesian network (BN) to analyze the environmental impacts on large-scale RHD with satellite remote sensing data such as the GIMMS NDVI product. The results show that the built BN can better quantify causality in the environmental mechanism modeling of RHD. The NDVI and LAI data from satellite remote sensing are important to the spatial–temporal RHD distribution and the mapping in the future. In regions with an elevation higher than 600 m (UPR) and lower than 600 m (LWR) of NTXJ, there are significant differences in the driving mechanism patterns of RHD, which are dependent on the elevation variation. In LWR, vegetation conditions have a weaker impact on RHD than UPR. It is possibly due to the Artemisia eaten by the dominant species Lagurus luteus (LL) in UPR being more sensitive to precipitation and temperature if compared with the Haloxylon ammodendron eaten by the Rhombomys opimus (RO) in LWR. In LWR, grazing intensity is more strongly and positively correlated to RHD than UPR, possibly due to both winter grazing and RO dependency on vegetation distribution; moreover, in UPR, sheep do not feed Artemisia as the main food, and the total vegetation is sufficient for sheep and LL to coexist. Under the different conditions of water availability of LWR and UPR, grazing may affect the ratio of aboveground and underground biomass by photosynthate allocation, thereby affecting the distribution of RHD. In extremely dry years, the RHD of LWR and UPR may have an indirect interactive relation due to changes in grazing systems.


Author(s):  
R. Pagany ◽  
W. Dorner

During the last years the numbers of wildlife-vehicle-collisions (WVC) in Bavaria increased considerably. Despite the statistical registration of WVC and preventive measures at areas of risk along the roads, the number of such accidents could not be contained. Using geospatial analysis on WVC data of the last five years for county Straubing-Bogen, Bavaria, a small-scale methodology was found to analyse the risk of WVC along the roads in the investigated area. Various indicators were examined, which may be related to WVC. The risk depends on the time of the day and year which shows correlations in turn to the traffic density and wildlife population. Additionally the location of the collision depends on the species and on different environmental parameters. Accidents seem to correlate with the land use left and right of the street. Land use data and current vegetation were derived from remote sensing data, providing information of the general land use, also considering the vegetation period. For this a number of hot spots was selected to identify potential dependencies between land use, vegetation and season. First results from these hotspots show, that WVCs do not only depend on land use, but may show a correlation with the vegetation period. With regard to agriculture and seasonal as well as annual changes this indicates that warnings will fail due to their static character in contrast to the dynamic situation of land use and resulting risk for WVCs. This shows that there is a demand for remote sensing data with a high spatial and temporal resolution as well as a methodology to derive WVC warnings considering land use and vegetation. With remote sensing data, it could become possible to classify land use and calculate risk levels for WVC. Additional parameters, derived from remote sensed data that could be considered are relief and crops as well as other parameters such as ponds, natural and infrastructural barriers that could be related to animal behaviour and should be considered by future research.


Author(s):  
Xiaowei Jia ◽  
Mengdie Wang ◽  
Ankush Khandelwal ◽  
Anuj Karpatne ◽  
Vipin Kumar

Effective and timely monitoring of croplands is critical for managing food supply. While remote sensing data from earth-observing satellites can be used to monitor croplands over large regions, this task is challenging for small-scale croplands as they cannot be captured precisely using coarse-resolution data. On the other hand, the remote sensing data in higher resolution are collected less frequently and contain missing or disturbed data. Hence, traditional sequential models cannot be directly applied on high-resolution data to extract temporal patterns, which are essential to identify crops. In this work, we propose a generative model to combine multi-scale remote sensing data to detect croplands at high resolution. During the learning process, we leverage the temporal patterns learned from coarse-resolution data to generate missing high-resolution data. Additionally, the proposed model can track classification confidence in real time and potentially lead to an early detection. The evaluation in an intensively cultivated region demonstrates the effectiveness of the proposed method in cropland detection.


Author(s):  
R. Pagany ◽  
W. Dorner

During the last years the numbers of wildlife-vehicle-collisions (WVC) in Bavaria increased considerably. Despite the statistical registration of WVC and preventive measures at areas of risk along the roads, the number of such accidents could not be contained. Using geospatial analysis on WVC data of the last five years for county Straubing-Bogen, Bavaria, a small-scale methodology was found to analyse the risk of WVC along the roads in the investigated area. Various indicators were examined, which may be related to WVC. The risk depends on the time of the day and year which shows correlations in turn to the traffic density and wildlife population. Additionally the location of the collision depends on the species and on different environmental parameters. Accidents seem to correlate with the land use left and right of the street. Land use data and current vegetation were derived from remote sensing data, providing information of the general land use, also considering the vegetation period. For this a number of hot spots was selected to identify potential dependencies between land use, vegetation and season. First results from these hotspots show, that WVCs do not only depend on land use, but may show a correlation with the vegetation period. With regard to agriculture and seasonal as well as annual changes this indicates that warnings will fail due to their static character in contrast to the dynamic situation of land use and resulting risk for WVCs. This shows that there is a demand for remote sensing data with a high spatial and temporal resolution as well as a methodology to derive WVC warnings considering land use and vegetation. With remote sensing data, it could become possible to classify land use and calculate risk levels for WVC. Additional parameters, derived from remote sensed data that could be considered are relief and crops as well as other parameters such as ponds, natural and infrastructural barriers that could be related to animal behaviour and should be considered by future research.


2018 ◽  
Author(s):  
Robert S Walker ◽  
Marcus J Hamilton

Background. The world’s last uncontacted indigenous societies in Amazonia have only intermittent and often hostile interactions with the outside world. Knowledge of their locations is essential for urgent protection efforts, but their extreme isolation, small populations, and semi-nomadic lifestyles make this a challenging task. Methods. Remote sensing technology with Landsat satellite sensors is a non-invasive methodology to track isolated indigenous populations through time. However, the small-scale nature of the deforestation signature left by uncontacted populations clearing villages and gardens has similarities to those made by contacted indigenous villages. Both contacted and uncontacted indigenous populations often live in proximity to one another making it difficult to distinguish the two in satellite imagery. Here we use machine learning techniques applied to remote sensing data with a training dataset of 500 contacted and 25 uncontacted villages. Results. Uncontacted villages generally have smaller cleared areas, reside at higher elevations, and are farther from populated places and satellite-detected lights at night. A random forest algorithm with an optimally-tuned detection cutoff has a leave-one-out cross-validated sensitivity and specificity of over 98%. A grid search around known uncontacted villages led us to identify 3 previously-unknown villages using predictions from the random forest model. Our efforts can improve policies toward isolated populations by providing better near real-time knowledge of their locations and movements in relation to encroaching loggers, settlers, and other external threats to their survival.


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 891
Author(s):  
Hooman Latifi ◽  
Ruben Valbuena

The alarming increase in the magnitude and spatiotemporal patterns of changes in composition, structure and function of forest ecosystems during recent years calls for enhanced cross-border mitigation and adaption measures, which strongly entail intensified research to understand the underlying processes in the ecosystems as well as their dynamics. Remote sensing data and methods are nowadays the main complementary sources of synoptic, up-to-date and objective information to support field observations in forest ecology. In particular, analysis of three-dimensional (3D) remote sensing data is regarded as an appropriate complement, since they are hypothesized to resemble the 3D character of most forest attributes. Following their use in various small-scale forest structural analyses over the past two decades, these sources of data are now on their way to be integrated in novel applications in fields like citizen science, environmental impact assessment, forest fire analysis, and biodiversity assessment in remote areas. These and a number of other novel applications provide valuable material for the Forests special issue “3D Remote Sensing Applications in Forest Ecology: Composition, Structure and Function”, which shows the promising future of these technologies and improves our understanding of the potentials and challenges of 3D remote sensing in practical forest ecology worldwide.


Sign in / Sign up

Export Citation Format

Share Document