scholarly journals THREE-DIMENSIONAL NUMERICAL ANALYSIS OF SEDIMENT TRANSPORT AROUND ABUTMENTS IN CHANNEL BEND

2014 ◽  
Vol 1 (34) ◽  
pp. 21 ◽  
Author(s):  
Han Sang Kim ◽  
Hamn-Ching Chen
2009 ◽  
Vol 47 (5) ◽  
pp. 670-675 ◽  
Author(s):  
Tim Fischer-Antze ◽  
Nils Rüther ◽  
Nils R.B. Olsen ◽  
Dieter Gutknecht

2021 ◽  
Author(s):  
Diwash Lal Maskey ◽  
Nils Ruther

<p>Floating units/booms are used to trap or guide floating debris in watercourses. In a relatively shallow depth, these floats could affect the velocity distribution, sediment transport and channel bed deformation.  A three-dimensional non-hydrostatic numerical modelling was performed in a 180 degree channel bend with floats to see the effects in flow distribution and bed deformation as a conceptual study. Different configurations of the floats were simulated. The results showed that the flow velocity increased and deposition decreased at the inner bank of the bend. Use of floating units could be studied to alter sediment deposition pattern and sediment transport phenomenon in watercourses.</p>


2007 ◽  
Vol 34 (9) ◽  
pp. 1087-1095 ◽  
Author(s):  
B Minor ◽  
C D Rennie ◽  
R D Townsend

A three-dimensional numerical model was used to examine the turbulent flow field and associated sediment transport due to a series of barbs (submerged groynes) in a channel bend. Model results were in good agreement with measured laboratory data and adequately simulated the important features of sediment transport. Statistical comparison of the predicted and measured equilibrium bed geometry found average regression coefficients of determination of 0.77 and 0.72 for the 90° and 135° channels, respectively. The predicted velocity data followed expected trends. The capability of a three-dimensional numerical model to simulate sediment transport through bend sections of a channel containing barbs was verified. This included the simulation of the effects of different arrangements of barb groups and an analysis of the data to determine the relation of the flow field to associated scour and deposition in a complex fluvial environment. These novel results are useful for improved analyses of the bank-protection capabilities of these structures and for the development and improvement of design guidelines.Key words: three-dimensional models, numerical models, movable bed models, channel bends, turbulence, secondary flow, scour, barbs, groynes.


Author(s):  
Emre Bulut ◽  
Gökhan Sevilgen ◽  
Ferdi Eşiyok ◽  
Ferruh Öztürk ◽  
Tuğçe Turan Abi

Author(s):  
Athanasios Donas ◽  
Ioannis Famelis ◽  
Peter C Chu ◽  
George Galanis

The aim of this paper is to present an application of high-order numerical analysis methods to a simulation system that models the movement of a cylindrical-shaped object (mine, projectile, etc.) in a marine environment and in general in fluids with important applications in Naval operations. More specifically, an alternative methodology is proposed for the dynamics of the Navy’s three-dimensional mine impact burial prediction model, Impact35/vortex, based on the Dormand–Prince Runge–Kutta fifth-order and the singly diagonally implicit Runge–Kutta fifth-order methods. The main aim is to improve the time efficiency of the system, while keeping the deviation levels of the final results, derived from the standard and the proposed methodology, low.


Sign in / Sign up

Export Citation Format

Share Document