scholarly journals EVALUATION OF THE WAVE CLIMATE OVER THE BLACK SEA: FIELD OBSERVATIONS AND MODELING

Author(s):  
Kebir Emre SaraçoÄŸlu ◽  
H. Anıl Guner ◽  
Cihan Åžahin ◽  
Yalçın Yuksel ◽  
Esin Çevik

The knowledge of the wave climate is one of the most important data for application of coastal engineering, which includes coastal structure design, sediment transport, coastal erosion and so on. Due to the lack of measurements in many region and high cost of wave measurements, coastal engineers have to estimate wave characteristics using a variety of methods, which comprise empirical and numerical solutions. A variety of empirical and numerical methods have been developed and used for determining wave characteristics. In this study, in order to determine wave climate over the Black Sea, it was used third generation Mike 21 spectral wave model. For this purpose, a series of numerical models were conducted in a way to cover the 13-year period between 1996 and 2008. The obtained results from numerical models were compared to the results of Wind and Deep Water Wave Atlas for Turkish Coasts. It was concluded that the results were highly consistent each other.

2016 ◽  
Vol 126 ◽  
pp. 276-298 ◽  
Author(s):  
Adem Akpınar ◽  
Bilal Bingölbali ◽  
Gerbrant Ph. Van Vledder

2021 ◽  
Author(s):  
Salvatore Causio ◽  
Piero Lionello ◽  
Stefania Angela Ciliberti ◽  
Giovanni Coppini

<p>This study analyzes the evolution of the wave climate in the Black Sea basin in a 31-year long hindcast (1988-2018) performed with the third-generation wave model WaveWatchIII v5.16, forced by the ECMWF-ERA5 reanalysis winds at 30km of spatial resolution and 1-hour frequency. The wave model is implemented on a grid covering the whole Black Sea, with 3km grid step and is off-line coupled with a NEMO based hydrodynamical model. The wave spectrum is discretized using 24 directional sectors, and 30 frequencies, with 10% increment starting from 0.055Hz. The model is implemented to solve deep water processes, following the WAM Cycle4 model physics, with Ultimate Quickest propagation scheme and GSE alleviation, which is implemented in WWIII. Wind input and dissipation are based on Ardhuin et al. (2010), wave-wave interactions are based on Discrete Interaction Approximation. Currents and air-sea temperature difference are provided to the wave model to account for Doppler shift and atmospheric stability above the sea. Model validation and statistical analysis have been carried out to describe the wave climate of the Black sea, considering the following wave fields: significant wave height (Hs), mean wave period (Tm) and mean wave direction. Statistics as Mean, Maximum, 5<sup>th</sup> percentile and 95<sup>th</sup> statistics have been computed to produce monthly climatologies. The work considers also the evaluation of trends for Hs and Tm, and the evaluation of tendency in the occurrence frequency of mean and max fields for Hs and Tm.</p><p>There is no evidence about an overall trend in Hs and Tm, but tendencies can be highlighted in some months and seasons. The most evident trend occurs in Summer on the whole wave spectrum, with reduction of Hs and Tm in the Eastern basin, and increasing in the South-Western basins. Even the evaluation of occurrence frequencies suggests that Black Sea is subjected to a change in the wave regime.</p>


Water ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 924 ◽  
Author(s):  
Liliana Rusu ◽  
Alina Raileanu ◽  
Florin Onea

The aim of the present work is to assess the wind and wave climate in the Black Sea while considering various data sources. A special attention is given to the areas with higher navigation traffic. Thus, the results are analyzed for the sites located close to the main harbors and also along the major trading routes. The wind conditions were evaluated considering two different data sets, the reanalysis data provided by NCEP-CFSR (U.S. National Centers for Environmental Prediction-Climate Forecast System Reanalysis) and the hindcast results given by a Regional Climate Model (RCM) that were retrieved from EURO-CORDEX (European Domain-Coordinated Regional Climate Downscaling Experiment). For the waves, there were considered the results coming from simulations with the SWAN (Simulating Wave Nearshore) model, forced with the above-mentioned two different wind fields. Based on these results, it can be mentioned that the offshore sites seem to show the best correlation between the two datasets for both wind and waves. As regards the nearshore sites, there is a good agreement between the average values of the wind data that are provided by the different datasets, except for the points located in the southern part of the Black Sea. The same trends noticed for the average values remain also valid for the extreme values. Finally, it can be concluded that the results obtained in this study are useful for the evaluation of the wind and wave climate in the Black Sea. Also, they give a more comprehensive picture on how well the wind field provided by the Regional Climate Model, and the wave model forced with this wind, can represent the features of a complex marine environment as the Black Sea is.


2021 ◽  
Author(s):  
Francesco Barbariol ◽  
Arno Behrens ◽  
Alvise Benetazzo ◽  
Silvio Davison ◽  
Gerhard Gayer ◽  
...  

<p>Reliable wave forecasts and hindcasts, together with long-term statistical analysis of extreme conditions, are of utmost importance for monitoring marine areas. Indeed, there is general consensus that high-quality predictions of extreme events during marine storms can substantially contribute to avoiding or minimizing human and material damage, especially in busy waterways such as the Mediterranean and Black Seas. So far, however, the wave climate characterization (average and anomaly relative to the average) has focused on the bulk characterization of the significant wave height H<sub>s</sub>, and it has lacked a description of the individual waves, such as the maximum ones that may occur at a given location in the sea. To fill this gap, we provide the intensity and geographical distribution of the maximum waves in the Mediterranean and Black Seas over 27 years (1993-2019), by representing the average annual (1993-2018) and anomaly for 2019 relative to the average of the 99th percentile of the expected maximum wave height H<sub>m</sub> and crest height C<sub>m</sub>. The analysis combines wave model hindcasts available through CMEMS model setup and the wave model WAVEWATCH III®, both forced with ECMWF ERA5 reanalysis winds. Results show that in 2019 maximum waves were smaller than usual in the Black Sea (anomalies of H<sub>m</sub> up to -1.5 m), while in the Mediterranean Sea a markedly positive anomaly (+2.5 m for H<sub>m</sub>) was found in the southern part of the basin. The peculiar 2019 configuration seems to be caused by a widespread atmospheric stability over the Black Sea and by depressions that rapidly passed over the Mediterranean Sea.</p>


Author(s):  
Fulya Islek ◽  
Yalcin Yuksel ◽  
Cihan Sahin

The wind and wave climate over the Black Sea were investigated by providing extensive datasets covering the last 40 years (1979-2018). Wind characteristics over the Black Sea were evaluated by using two well-known wind fields (i.e., ECMWF ERA-Interim and NCEP/CFSR). Wave simulations were generated from the MIKE 21 SW model forcing with two wind datasets. The possible effect of the long-term variability on the wind and wave characteristics over the Black Sea was discussed in the context of climate change.


2013 ◽  
Vol 2013 ◽  
pp. 1-20 ◽  
Author(s):  
Sorin Diaconu ◽  
Eugen Rusu

The present work describes a study related to the influence on the shoreline dynamics of a wave farm consisting of Wave Dragon devices operating in the western side of the Black Sea. Based on historical data analysis of the wave climate, the most relevant environmental conditions that could occur were defined, and for these cases, simulations with SWAN spectral phase averaged wave model were performed. Two situations were considered for the most representative patterns: model simulations without any wave energy converter and simulations considering a wave farm consisting of six Wave Dragon devices. Comparisons of the wave model outputs have been carried out in both geographical and spectral spaces. The results show that although a significant influence appears near the wave farm, this gradually decreases to the coast line level. In order to evaluate the influence of the wave farm on the longshore currents, a nearshore circulation modeling system was used. In relative terms, the longshore current velocities appear to be more sensitive to the presence of the wave farm than the significant wave height. Finally, the possible impact on the marine flora and fauna specific to the target area was also considered and discussed.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
J. Swain ◽  
P. A. Umesh ◽  
M. Baba ◽  
A. S. N. Murty

The ocean wave climate has a variety of applications in Naval defence. However, a long-term and reliable wave climate for the Indian Seas (The Arabian Sea and The Bay of Bengal) over a desired grid resolution could not be established so far due to several constraints. In this study, an attempt was made for the simulation of wave climate for the Indian Seas using the third-generation wave model (3g-WAM) developed by WAMDI group. The 3g-WAM as such was implemented at NPOL for research applications. The specific importance of this investigation was that, the model utilized a “mean climatic year of winds” estimated using historical wind measurements following statistical and probabilistic approaches as the winds which were considered for this purpose were widely scattered in space and time. Model computations were carried out only for the deep waters with current refraction. The gridded outputs of various wave parameters were stored at each grid point and the spectral outputs were stored at selected locations. Monthly, seasonal and annual distributions of significant wave parameters were obtained by post-processing some of the model outputs. A qualitative validation of simulated wave height and period parameters were also carried out by comparing with the observed data. The study revealed that the results of the wave climate simulation were quite promising and they can be utilized for various operational and ocean engineering applications. Therefore, this study will be a useful reference/demonstration for conducting such experiments in the areas where wind as well as wave measurements are insufficient.


2014 ◽  
pp. 1309-1315
Author(s):  
Z Cherneva ◽  
C Soares ◽  
N Andreeva
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document