Amelioration of Hybrid Power System Using IOT

Author(s):  
K.S. Chandragupta Mauryan ◽  
R. Purrnimaa Shiva Sakthi

Today the whole world is facing one of the important crises that inadequate of natural resources like fossil fuels for energy production. In order to overcome this the use of renewable energy resources is encouraged. This paper describes about the electrical energy power generation with the interface of solar photovoltaic and wind energy. Solar Energy and wind energy are non conventional energy resources. This will provide an uninterrupted power supply without damaging the natural balance. Now a day’s maintenance of power production station becomes a little difficult process. In order to overcome this drawback IoT (Internet of Things) used. IoT manages the power production data’s in each PV module and wind turbines. Hence it is further used to identify the defective panels and turbines for the site management purposes.

Supply of energy is able to meet the increasing demand of today’s people, which is major causes faced by world. The shortage of power can be reduced by using renewable energy resources. There are many renewable energy resources like wind, tidal and biomass energy, solar energy. The mostsignificant form of renewable source is solar energy. It has undergone a research and development in the recent years and still it is developing. Solar photovoltaic cell is device used in solar energy conversion. It converts forthrightly electrical energy from the sunlight. The efficiency of PV cell is disturbed when rise in working temperature. Temperature on the panel is inversely proportional to the power generation. The main problem met by solar cell is temperature rise. Due to this temperature the energy conversion is low. By decreasing the temperature on the surface of PV panel to enhance the electric efficiency. So, in present-day different cooling methods have been projected and verified experimentally. Several techniques have been tried, mostly based on active water and air cooling, as these are simple techniques. The main objective of this system is to increase the solar panel efficiency using water cooling method of the panel gets cooled by exchange temperature.


Wind energy is one of the important renewable energy resources because of its reliability due to the development of the technology and relative less cost. “The wind energy are converted into electrical energy using rotating blades which are connected to the generator. Due to environmental conditions and large structure, the blades are subjected to various faults and cause the lack of productivity. The downtime can be reduced when they are diagnosed periodically using structural health monitoring. These are considered as a pattern recognition problem which consist of three phases, namely feature extraction, feature selection and feature classification. In this research, statistical features are extracted from vibration signals, feature selection are carried out using J48 algorithm and the feature classification is done with a rotation forest algorithm


2020 ◽  
Vol 9 (1) ◽  
pp. 122-139
Author(s):  
Abhishek Choubey ◽  
Prashant Baredar ◽  
Neha Choubey

The country or region where energy production is based on imported coal or oil will become more self-sufficient by using alternatives such as wind power. Electricity produced by the wind produces no CO2 emissions and therefore does not contribute to the greenhouse effect. Wind energy is relatively labour intensive and thus creates many jobs. Wind energy is the major alternative of conventional energy resources. A wind turbine transforms the kinetic energy in the wind to mechanical energy in a shaft and finally into electrical energy in a generator. The turbine blade is the most important component of any wind turbine. In this article is considered the single airfoil National Advisory Committee for Aeronautics (NACA) 0018 and a computational fluid dynamics (CFD) analysis is done at different blade angles 0º, 10º, 15º, and 30º with a wind velocity of 4 m/s. The analysis results show that a blade angle of 10º gives the best possible power and pressure and velocity distributions are plotted for every case.


2018 ◽  
Vol 7 (2.12) ◽  
pp. 370
Author(s):  
Arun Peter. J ◽  
Keerthi Vijayadhasan. G

Due to rapid urbanization and industrialization there is fast depletion of fossil fuels. Renewable energy resources contribute a considerable part in the Grid these days yet there is a mismatch between generation and consumption. The consumption of electrical energy is more than the electrical energy generated. It has become mandatory for us to conserve electrical energy in order to save the fuel reserves for our future generation. In this paper it is explained how an energy efficient institution can be made with the help of periodic Energy Audit  


Solar photovoltaic and wind energy resources are gaining more popularity as an integrated or complementary power system. Integrating or complementing either solar photovoltaic or wind energy would be an ideal to reduce the intermittency when self-intervention from either one of the input resources is performed. The self-intervention plays a vital role in renewable energy resources hybridization, hence this paper proposes to model and simulate an adaptive voltage-divider sensing method to perform the self-intervention technique for renewable energy resources hybridization using the Stateflow/Simulink MATLAB software. The proposed adaptive voltage-divider sensing method performs the voltage sensing and measurement for input voltages from either one of the renewable energy resources adopted. This voltage sensing and measurement is an important factor to demonstrate the self-intervention in the designed and developed Stateflow/Simulink MATLAB Controller. The proposed adaptive voltage-divider sensing method and self-intervention technique for renewable energy resources hybridization is analyzed along with the voltage sensing and measurement at the inputs. The self-intervention state modes for the inputs from the renewable energy resources hybridization are given by the simulation results in this study.


2015 ◽  
Vol 12 (3) ◽  
pp. 215-220 ◽  
Author(s):  
Faruk Oral ◽  
İsmail Ekmekçi ◽  
Nevzat Onat

In recent years, decreasing reserves and environmental problems related with fossil fuels have increased the demand for clean and renewable energy sources, as with all over the world and also in Turkey. Wind energy is the one of the most rapidly growing among the renewable energy sources in terms of technological and utilization. Turkey is one of the rich countries in Europe in respect to wind energy potential. Productive and effective use of this potential is very important for Turkey that is depended on foreign countries especially in respect to fossil energy sources. Wind speed values are the most important data in calculation of electrical energy from wind turbines. In this study, latest developments and energy-power equations related to wind turbines are investigated. Using of the data obtained from the wind measurement station installed in Sakarya-Esentepe region, annual electrical energy production of an example wind plant is predicted.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4435
Author(s):  
Travis C. Douville ◽  
Dhruv Bhatnagar

The significant offshore wind energy potential of Oregon faces several challenges, including a power grid which was not developed for the purpose of transmitting energy from the ocean. The grid impacts of the energy resource are considered through the lenses of (i) resource complementarity with Variable Renewable Energy resources; (ii) correlations with load profiles from the four balancing authorities with territory in Oregon; and (iii) spatial value to regional and coastal grids as represented through a production cost model of the Western Interconnection. The capacity implications of the interactions between offshore wind and the historical east-to-west power flows of the region are discussed. The existing system is shown to accommodate more than two gigawatts of offshore wind interconnections with minimal curtailment. Through three gigawatts of interconnection, transmission flows indicate a reduction of coastal and statewide energy imports as well as minimal statewide energy exports.


2021 ◽  
Vol 4 (2) ◽  
pp. 125-130
Author(s):  
Muhammad Azhar Mahmood ◽  
Muhammad Kamran Liaqat Bhatti ◽  
S. Raza ◽  
M. Riaz

Most of the industries including the oil sector are looking forward towards the renewable energy resources with proper energy management system (EMS) as it is the need of time. For this purpose, solar and wind energy are the renewable energy resources, which are obtained from natural resources and produce clean and environment -friendly electrical energy and can be used for oil depots. The proper utilization of solar and wind energy from natural resource may result in economical and cost-effective EMS. In the proposed research work, an effective energy management demonstration is delivered to ensure the ceaseless flexibility of power. Furthermore, reduction of production per unit cost to the oil sector industry by utilizing multiple objectives streamlining. In the proposed oil depot, connected loads are divided into Shiftable and Non-Shiftable loads and then apply Branch and Bound Algorithm (BnB) with binary integer linear programming (BILP). By using the BnB technique, selected shiftable loads are shifted to the low cost energy resource automatically and resultantly, we get the low price unit cost and continuous power supply. Simulation results for the above-mentioned research work are performed on MATLAB. The proposed technique helps to reduce the power stack shedding issue as well.


2017 ◽  
Vol 6 (3) ◽  
pp. 50-65
Author(s):  
Dilek Temiz Dinç ◽  
Aytaç Gökmen ◽  
Zehra Burçin Kanık

Energy is the source of development of the mankind and an indispensable input for economic growth. Currently, most of the energy consumed in the world is composed of fossil fuels which are not environmentally friendly and reliable since their prices are volatile and their supply compels importing countries dependent on energy exporting countries. Thus, a good remedy to reduce fossil fuel dependency is to utilize more renewable energy resources. Renewable resources can be replenished quickly, are almost infinite and would lead a country to sustainable development. The Republic of Turkey is a net importer of energy. The diversification of energy sources and supply security is of great importance for it. Thus, the objective of this study is to analyze the relationship between renewable energy production and economic growth in Turkey by using Johansen Cointegration Test, Vector Error Correction Model (VECM), Granger Causality Test and the Augmented Dickey-Fuller Test (ADF). Consequently, both long run and short run a casualty running from GDP growth to renewable energy production is determined in the study.


Author(s):  
Praveen Laws ◽  
Rajagopal V Bethi ◽  
Pankaj Kumar ◽  
Santanu Mitra

Nonrenewable fossil fuels are finite resources that will ultimately deplete in near future. Nature sheds colossal amount of renewable wind energy but humans harvest a morsel. Taking this into account a numerical study is proposed on wind energy harvesting from a speeding subway train. Subways trains generate a remarkable gust of wind that can be transferred to useful electrical energy on daily basis. To this aim, a numerical analysis is modeled by placing Savonius wind turbine in a subway tunnel to crop the wind energy produced from the speeding train. The passage of train in the tunnel generates very high velocity slipstreams along the length of the tunnel. The slipstream phenomena develop a boundary layer regime that will be absorbed by the Savonius wind turbine to self-start and generate power. In the present study, a two-dimensional numerical simulation with modified turbine blade design is carried out using open source tool OpenFOAM® with PimpleDyMFoam solver coupled with six degrees of freedom mesh motion solver sixDoFRigidBodyMotion and k–ɛ turbulence modeling, to measure the amount of torque predicted by the rotor from the gust of wind produced by the speeding train in the tunnel. Being a self-start turbine with no yaw mechanism required the turbine collects air from any direction and converts it into useful power.


Sign in / Sign up

Export Citation Format

Share Document