scholarly journals Functions of Multi-Pendula System in Spatial Motion

Author(s):  
J.S. Prichani ◽  
T.W. Sakwa ◽  
N.O. Ongati
1981 ◽  
Vol 103 (4) ◽  
pp. 718-724 ◽  
Author(s):  
J. M. McCarthy ◽  
B. Roth

This paper develops the differential properties of ruled surfaces in a form which is applicable to spatial kinematics. Derivations are presented for the three curvature parameters which define the local shape of a ruled surface. Related parameters are also developed which allow a physical representation of this shape as generated by a cylindric-cylindric crank. These curvature parameters are then used to define all the lines in the moving body which instantaneously generate speciality shaped trajectories. Such lines may be used in the synthesis of spatial motions in the same way that the points on the inflection circle and cubic of stationary curvature are used to synthesize planar motion. As an example of this application several special sets of lines are defined: the locus of all lines which for a general spatial motion instantaneously generate helicoids to the second order and the locus of lines generating right hyperboloids to the third order.


Author(s):  
Jin Yao ◽  
Liju Xu ◽  
Shou-wen Fan

Abstract A method is presented for kinematical synthesis of an RS-SRR-SS adjustable spatial motion generator for three alternate tasks. Three separate systems of synthesis equations to exactly generate the first and the last positions for each task are obtained for the R-S by co-plane and constant distance conditions, for the S-R-R by co-plane, constant distance conditions and inversion theory, and for S-S by constant distance condition. Based on these equations, mathematical model for approximately generating the intermediate positions for each task is formulated. This method is characterized by reduction of the unknowns and equations in both exact and approximate syntheses. As a result, computing work is to be decreased obviously.


2017 ◽  
Vol 49 (2) ◽  
pp. 549-580 ◽  
Author(s):  
Bertrand Cloez

AbstractWe consider a particle system in continuous time, a discrete population, with spatial motion, and nonlocal branching. The offspring's positions and their number may depend on the mother's position. Our setting captures, for instance, the processes indexed by a Galton–Watson tree. Using a size-biased auxiliary process for the empirical measure, we determine the asymptotic behaviour of the particle system. We also obtain a large population approximation as a weak solution of a growth-fragmentation equation. Several examples illustrate our results. The main one describes the behaviour of a mitosis model; the population is size structured. In this example, the sizes of the cells grow linearly and if a cell dies then it divides into two descendants.


Author(s):  
Jian Wang ◽  
A.Yu. Krasnov ◽  
Yu.A. Kapitanyuk ◽  
S.A. Chepinsky ◽  
S.A. Kholunin ◽  
...  

2020 ◽  
Vol 5 (2) ◽  
pp. 134-139
Author(s):  
Rizky Arman ◽  
Yovial Mahyoedin ◽  
Yovial Mahyoedin

AbstrakAKinematika dan dinamika mesin melibatkan desain mesin atas dasar kebutuhan gerak mereka. Kombinasi bagian yang saling berhubungan memiliki gerakan yang pasti dan mampu melakukan pekerjaan yang berguna dapat disebut mesin. Mekanisme adalah komponen dari mesin yang terdiri dari dua atau lebih badan diatur sedemikian rupa sehingga gerakan satu memaksa gerakan yang lain. Desain kereta listrik otomotif (sejenis mesin) sangat  ditentukan oleh beberapa mekanisme, termasuk hubungan slider-engkol, cam dan follower hubungan, dan kereta gigi. Banyak mekanisme yang melibatkan gerak planar, gerak dalam satu pesawat atau di aset bidang sejajar. Kasus yang lebih umum, gerak spasial, berlaku untuk mekanisme di mana gerakan harus dijelaskan dalam tiga dimensi. Analisis kinematika dilakukan di bawah grafis pada umumnya, seperti metode poligon yang menangkap mekanisme dalam satu saat. Cara alternatif lain untuk masalah ini adalah melibatkan metode matematika. Solusi ini memberikan cara yang akurat dan tercepat karena didukung oleh teknologi komputer. Tujuan dari proyek ini adalah untuk menentukan rumus untuk posisi, kecepatan, dan pernyataan percepatan mesin gergaji dengan menggunakan Mathlab. Kata kunci: mekanisme, gerak (posisi, kecepatan dan percepatan), metode poligon AbstractKinematics and dynamics of machinery involve the design of machines on the basis of their motion requirements. A combination of interrelated parts having definite motions and capable of performing useful work may be called a machine. A mechanism is a component of a machine consisting of two or more bodies arranged so that the motion of one compels the motion of the others. The design of an automotive power train (a type of machine) is concerned with several mechanism, including slider-crank linkages, cam and follower linkages, and gear trains. Many mechanisms undergo planar motion, motion in a single plane or in asset of parallel planes. The more general case, spatial motion, applies to mechanism in which the motion must be described in three dimensions. Kinematics analysis is done under graphically in general, such as polygon method which capture the mechanism in one moment. Another way to alternate this problem is involve any mathematical method. This solution gave the accurate and fastest way because supported by computer technology. The aim of this project is to determine the formula for position, velocity, and acceleration statement of the sawing machine by using Mathlab.Keywords: mechanism, motion (position, velocity and acceleration), polygon method


Sign in / Sign up

Export Citation Format

Share Document