scholarly journals Ultimate Limit State Risk Assessment of Penta Pod Suction Bucket Support Structures for Offshore Wind Turbine due to Scour

2021 ◽  
Vol 33 (6) ◽  
pp. 374-382
Author(s):  
Young Jin Kim ◽  
Ngo Duc Vu ◽  
Dong Hyawn Kim

The scour risk assessment was conducted for ultimate limit state of newly developed penta pod suction bucket support structures for a 5.5 MW offshore wind turbine. The hazard was found by using an empirical formula for scour depth suitable for considering marine environmental conditions such as significant wave height, significant wave period, and current velocity. The scour fragility curve was calculated by using allowable bearing capacity criteria of suction foundation. The scour risk was assessed by combining the scour hazard and the scour fragility.

2018 ◽  
Vol 7 (3.36) ◽  
pp. 23
Author(s):  
Aliakbar Khosravi ◽  
Tuck Wai Yeong ◽  
Mohammed Parvez Anwar ◽  
Jayaprakash Jaganathana ◽  
Teck Leong Lau ◽  
...  

This research aimed at investigating tripod and three-legged offshore wind turbine substructures. A comparison between the two substructures based on their weight as well as the installation method of piles, i.e. pre-piling and post-piling, was carried out. The in-place (Ultimate Limit State), Dynamic, natural frequency check and fatigue (Fatigue Limit State) analyses were conducted considering aerodynamic and hydrodynamic loads imposed on substructures in 50m water depth. An optimisation process was carried out in order to reduce the mass of substructures. The results revealed that the three-legged substructure is more cost effective with 25% lesser structure mass. However, the construction of the three-legged structure usually takes more time due to increased number of members and subsequently welding joints. The results, furthermore, showed that the pre-piling method reduces the time and cost of offshore installation, and reduces the weight of piles by 50%.  


Author(s):  
Hyungjun Kim ◽  
Joonmo Choung ◽  
Gi-Young Jeon

This paper presents a mooring design procedure of a floating offshore wind turbine. The offshore environment data of Jeju south sea collected from Korea Hydrographic and Oceanographic Administration (KHOA) are used as environmental conditions for hydrodynamic analysis. A semi-submersible floating wind turbine system is considered based on Offshore Code Comparison Collaborative Continuation (OC4) DeepCWind platform and the National Renewable Energy Laboratory (NREL) 5MW class wind turbine. Catenary mooring with studless chain is chosen as the mooring system. Important design decisions such as how large the nominal sizes are, how long the mooring lines are, how far the anchor points are located, are demonstrated in detail. Considering ultimate limit state and fatigue limit state based on 100-year return period and 50 year design life, respectively, long-term predictions of breaking strength and fatigue are performed.


Author(s):  
Baran Yeter ◽  
Yordan Garbatov ◽  
C. Guedes Soares

The probability of existence of defects, fatigue damage and crack growth in the offshore wind turbine support structures subjected to extreme waves and wind-induced loads is very high and may occur at a faster rate in a low cycle fatigue regime and crack growth, leading to a dramatic reduction in the service life of structures. It is therefore vital to assess the safety and reliability of offshore wind turbine support structures at sea. The aim of the present study is to carry out a low cycle fatigue and crack growth reliability analysis of an offshore wind turbine support structure during the service life. The analysis includes different loading scenarios and accounts for the uncertainties related to the structural geometrical characteristics, the size of the manufacturing and during the service life defects, crack growth, material properties, and model assumed in the numerical analyses. The probability of failure is defined as a serial system of two probabilistic events described by two limit state functions. The first one is related to a crack initiation based on the local strain approach and the second one on the crack growth applying the fracture mechanic approach. The first and second order reliability methods are used to estimate the reliability index and the effect of low cycle fatigue and crack growth on the reliability estimate of the offshore wind turbine support structure. The sensitivity analysis is performed in order to determine the degree of the significance of the random variables and several conclusions are derived.


Author(s):  
Bryan Nelson ◽  
Yann Quéméner

This study evaluated, by time-domain simulations, the fatigue lives of several jacket support structures for 4 MW wind turbines distributed throughout an offshore wind farm off Taiwan’s west coast. An in-house RANS-based wind farm analysis tool, WiFa3D, has been developed to determine the effects of the wind turbine wake behaviour on the flow fields through wind farm clusters. To reduce computational cost, WiFa3D employs actuator disk models to simulate the body forces imposed on the flow field by the target wind turbines, where the actuator disk is defined by the swept region of the rotor in space, and a body force distribution representing the aerodynamic characteristics of the rotor is assigned within this virtual disk. Simulations were performed for a range of environmental conditions, which were then combined with preliminary site survey metocean data to produce a long-term statistical environment. The short-term environmental loads on the wind turbine rotors were calculated by an unsteady blade element momentum (BEM) model of the target 4 MW wind turbines. The fatigue assessment of the jacket support structure was then conducted by applying the Rainflow Counting scheme on the hot spot stresses variations, as read-out from Finite Element results, and by employing appropriate SN curves. The fatigue lives of several wind turbine support structures taken at various locations in the wind farm showed significant variations with the preliminary design condition that assumed a single wind turbine without wake disturbance from other units.


Sign in / Sign up

Export Citation Format

Share Document