Effect of the wing trailing-edge flaps and spoilers position on the jet-vortex wake behind an aircraft during takeoff and landing run

Author(s):  
Yu M Tsirkunov ◽  
MA Lobanova ◽  
AI Tsvetkov ◽  
BA Schepanyuk

The large-scale vortex structure of flow in the near wake behind an aircraft during its run on a runway is investigated numerically. The geometrical aircraft configuration was taken close to a mid-range commercial aircraft like Boeing 737-300. It included all essential elements: a body (fuselage), wings with winglets, horizontal and vertical stabilizers, engine nacelles, nacelle pylons, inboard flap track fairings, leading-edge and trailing-edge flaps, and spoilers. The position of flaps and spoilers corresponded to the takeoff and landing run conditions. Computational simulation was based on solving the Reynolds averaged Navier–Stokes equations closed with the Menter Shear Stress Transport turbulence model. Patterns of streamlines, fields of the axial vorticity and the turbulent intensity, vertical and horizontal velocity profiles in the wake are compared and discussed for both run regimes. The flow model was preliminary tested for validity by comparison of the calculated velocity profiles behind a reduced-scale aircraft model with those obtained in special wind tunnel experiments.

Author(s):  
Khaled J. Hammad

Particle Image Velocimetry (PIV) was used to study the flow structure and turbulence, upstream, over, and downstream a shallow open cavity. Three sets of PIV measurements, corresponding to a turbulent incoming boundary layer and a cavity length-to-depth ratio of four, are reported. The cavity depth based Reynolds numbers were 21,000; 42,000; and 54,000. The selected flow configuration and well characterized inflow conditions allow for straightforward assessment of turbulence models and numerical schemes. All mean flow field measurements display a large flow recirculation region, spanning most of the cavity and a smaller, counter-rotating, secondary vortex, immediately downstream of the cavity leading edge. The Galilean decomposed instantaneous velocity vector fields, clearly demonstrate two distinct modes of interaction between the free shear and the cavity trailing edge. The first corresponds to a cascade of vortical structures emanating from the tip of the leading edge of the cavity that grow in size as they travel downstream and directly interact with the trailing edge, i.e., impinging vortices. The second represents vortices that travel above the trailing edge of the cavity, i.e., non-impinging vortices. In the case of impinging vortices, a strong, large scale region of recirculation forms inside the cavity and carries the flow disturbances, arising from the impingement of vortices on the trailing edge of the cavity, upstream in a manner that interacts with and influences the flow as it separates from the cavity leading edge.


1969 ◽  
Vol 73 (708) ◽  
pp. 1027-1028
Author(s):  
Henri Deplante

The interest of wings with variable sweepback springs directly from pure commonsense and appeals to no profound knowledge of aerodynamics for its justification. To realise the advantage of variable geometry, it is enough to know that only a wing of small relative thickness is capable of good performance at supersonic speeds and that by increasing the sweepback from 20° to 70° the thickness of a wing is divided by about 2. In the advanced position, the wing offers its full span to the airstream and with high-lift devices in action (leading-edge slats and trailing-edge flaps combined), the aeroplane can develop the considerable lift necessary for take-off and landing as well as for break-through and for slow approach. Wings still advanced but slats, flaps and undercarriage retracted, the aeroplane is in excellent maximum fineness condition for protracted cruising at subsonic speed or for a long wait. As soon as transonic (Mach No of more than 0-8) or supersonic speeds are in question, the wings are progressively folded back.


Author(s):  
Shilpa Thakur ◽  
K. A. Abhinav ◽  
Nilanjan Saha

This paper focuses on load mitigation by implementing controllable trailing-edge slotted flaps on the blades of an offshore wind turbine (OWT). The benchmark NREL 5 MW horizontal axis OWT is subjected to coupled stochastic aerodynamic-hydrodynamic analysis for obtaining the responses. The OWT is supported on three different fixed-bottom structures situated in various water depths. Blade element momentum (BEM) theory and Morison's equation are used to compute the aerodynamic and hydrodynamic loads, respectively. Presently, the load reduction obtained by means of the slotted flaps is regulated using an external dynamic link library considering the proportional-integral-derivative (PID) controller. BEM theory is presently modified to account for unsteady effects of flaps along the blade span. The present analysis results show reduction up to 20% in blade and tower loads for the turbine with different support structures on implementing controllable trailing edge flaps (TEFs). This study can form the basis for evaluating the performance of large-scale fixed OWT rotors.


Author(s):  
R. P. Shreeve ◽  
Y. Elazar ◽  
J. W. Dreon ◽  
A. Baydar

The results of two component laser-Doppler velocimeter (LDV) surveys made in the near wake (to one fifth chord) of a controlled diffusion (CD) compressor blade in a large scale cascade wind tunnel, are reported. The measurements were made at three positive incidence angles from near-design to angles thought to approach stall. Comparisons were made with calibrated pressure probe and hot-wire wake measurements and good agreement was found. The flow was found to be fully attached at the trailing edge at all incidence angles and the wake profiles were found to be highly skewed. Despite the precision obtained in the wake velocity profiles, the blade loss could not be evaluated accurately without measurements of the pressure field. The blade trailing edge surface pressures and velocity profiles were found to be consistent with downstream pressure probe measurements of loss, allowing conclusions to be drawn concerning the design of the trailing edge.


1991 ◽  
Vol 113 (4) ◽  
pp. 591-599 ◽  
Author(s):  
R. P. Shreeve ◽  
Y. Elazar ◽  
J. W. Dreon ◽  
A. Baydar

The results of two component laser-Doppler velocimeter (LDV) surveys made in the near wake (to one fifth chord) of a controlled diffusion (CD) compressor blade in a large-scale cascade wind tunnel are reported. The measurements were made at three positive incidence angles from near design to angles thought to approach stall. Comparisons were made with calibrated pressure probe and hot-wire wake measurements and good agreement was found. The flow was found to be fully attached at the trailing edge at all incidence angles and the wake profiles were found to be highly skewed. Despite the precision obtained in the wake velocity profiles, the blade loss could not be evaluated accurately without measurements of the pressure field. The blade trailing edge surface pressures and velocity profiles were found to be consistent with downstream pressure probe measurements of loss, allowing conclusions to be drawn concerning the design of the trailing edge.


1988 ◽  
Vol 92 (914) ◽  
pp. 154-164 ◽  
Author(s):  
B. C. Hardy ◽  
S. P. Fiddes

SummaryA three-dimensional panel method has been used to calculate edge-suction forces for thin sharp-edged wings in incompressible flow. The suction forces have been used to estimate the vortex lift on the wings by means of the leading-edge suction analogy due to Polhamus.The results for planar wings are in acceptable agreement with other methods based on the suction analogy. A limited comparison with results from experiments for non-planar wings revealed good prediction of lift and drag increments associated with the deflection of leading and trailing edge flaps for ‘conventional’ wings of high sweep, but only moderate agreement for a grossly non-planar configuration.


1995 ◽  
Vol 117 (1) ◽  
pp. 162-169 ◽  
Author(s):  
D. H. Fruman ◽  
P. Cerrutti ◽  
T. Pichon ◽  
P. Dupont

The effect of the planform of hydrofoils on tip vortex roll-up and cavitation has been investigated by testing three foils having the same NACA 16020 cross section but different shapes. One foil has an elliptical shape while the other two are shaped like quarters of ellipses; one with a straight leading edge and the other with a straight trailing edge. Experiments were conducted in the ENSTA, Ecole Navale and IMHEF cavitation tunnels with homologous foils of different sizes to investigate Reynolds number effects. Hydrodynamic forces as well as cavitation inception and desinence performance were measured as a function of Reynolds number and foil incidence angle. Laser Doppler measurements of the tangential and axial velocity profiles in the region immediately downstream of the tip were also performed. At equal incidence angle and Reynolds number, the three foils show different critical cavitation conditions and the maximum tangential velocity near the tip increases as the hydrofoil tip is moved from a forward to a rear position. However, the velocity profiles become more similar with increasing downstream distance, and at downstream distances greater than one chord aft of the tip, the differences between the foils disappear. The rate of tip vortex roll-up is much faster for the straight leading edge than for the straight trailing edge foil and, in the latter case, a significant portion of the roll-up occurs along the foil curved leading edge. The minimum of the pressure coefficient on the axis of the vortex was estimated from the velocity measurements and correlated with the desinent cavitation number for the largest free stream velocities. The correlation of data is very satisfactory. At the highest Reynolds number tested and at equal lift coefficients, the straight leading edge foil displays the most favorable cavitation desinent numbers.


1997 ◽  
Vol 43 (144) ◽  
pp. 265-275 ◽  
Author(s):  
Benoît Legrésy ◽  
Frédérique Rémy

AbstractThe aim of this paper is to investigate the geophysical characteristics of the Antarctic ice sheet using radar altimetric observations. To do this, we use an altimetric waveform simulator, in situ observations, ERS-1 (European remote-sensing satellite) data and SPOT (Satellite pour l’observation de la terre) images. The small-scale study takes place at Dome C, Terre Adélie, which is a relatively flat region with gentle undulations and low wind speed. Despite this, the altimetric waveform parameters (height, energy, leading edge and trailing edge) are highly noisy. The effect of undulations on the waveform parameters is found to be dominant. The combination of a subsurface signal and a rough surface produces a linear effect on the altimetric backscattering or on the trailing edge of the waveform, but a strongly non-linear effect on the leading edge of the waveform or height estimation. As a consequence, the height measurement is very sensitive to the altimeter technical or orbital characteristics and is not reproducible from one mission to another. Observations show sastrugi fields that enhance the leading edge and affect the whole waveform. Observed local backscattering changes, probably due to local variations in surface microroughness, enhance the backscattered energy and may artificially create a topographic signal. The continental-scale study shows coherent patterns. Even if both surface and subsurface components affect the altimetric observation, the large-scale signal is mostly controlled by surface backscattering variations. The surface or near-subsurface characteristics of the snowpack may then be reached by altimetric observations.


1997 ◽  
Vol 43 (144) ◽  
pp. 265-275 ◽  
Author(s):  
Benoît Legrésy ◽  
Frédérique Rémy

AbstractThe aim of this paper is to investigate the geophysical characteristics of the Antarctic ice sheet using radar altimetric observations. To do this, we use an altimetric waveform simulator, in situ observations, ERS-1 (European remote-sensing satellite) data and SPOT (Satellite pour l’observation de la terre) images. The small-scale study takes place at Dome C, Terre Adélie, which is a relatively flat region with gentle undulations and low wind speed. Despite this, the altimetric waveform parameters (height, energy, leading edge and trailing edge) are highly noisy. The effect of undulations on the waveform parameters is found to be dominant. The combination of a subsurface signal and a rough surface produces a linear effect on the altimetric backscattering or on the trailing edge of the waveform, but a strongly non-linear effect on the leading edge of the waveform or height estimation. As a consequence, the height measurement is very sensitive to the altimeter technical or orbital characteristics and is not reproducible from one mission to another. Observations show sastrugi fields that enhance the leading edge and affect the whole waveform. Observed local backscattering changes, probably due to local variations in surface microroughness, enhance the backscattered energy and may artificially create a topographic signal. The continental-scale study shows coherent patterns. Even if both surface and subsurface components affect the altimetric observation, the large-scale signal is mostly controlled by surface backscattering variations. The surface or near-subsurface characteristics of the snowpack may then be reached by altimetric observations.


Sign in / Sign up

Export Citation Format

Share Document