scholarly journals A Study on Optimization of Propulsion Systems for Series Hybrid Electric Vehicles Considering Mission Equipments

Author(s):  
Myeong-Eon Jang ◽  
Sang-Man Kim ◽  
Kyu-Hong Han ◽  
Seung-Tai Yeo
Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 879
Author(s):  
Gianfranco Rizzo ◽  
Shayesteh Naghinajad ◽  
Francesco Tiano ◽  
Matteo Marino

Hybrid Electric Vehicles (HEVs) can be divided into three categories according to how the two propulsion systems (the thermal and the electric ones) supply the driving torque to the vehicle. When the torque is supplied only by an electric propulsion system, while the heat engine takes care of generating the electricity needed to operate the system, it is called a hybrid-series. Conversely, when both propulsion systems provide torque, the vehicle is identified with parallel hybrid wording. Among the parallel hybrids there is a particular configuration called Through-the-Road (TTR). In this configuration, the two propulsion systems are not mechanically connected to each other, but it is precisely the road that allows hybrid propulsion. This architecture, dating back to the early twentieth century, is still used by several manufacturers and carries with it peculiar configurations and control methods. It is also a configuration that fits well with the transformation of conventional vehicles into a hybrid. The paper presents a survey of the TTR HEV solution, evidencing applications, potentialities and limits.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1629 ◽  
Author(s):  
Li Chen ◽  
Yuqi Tong ◽  
Zuomin Dong

Heavy-duty hybrid electric vehicles and marine vessels need a sizeable electric energy storage system (ESS). The size and energy management strategy (EMS) of the ESS affects the system performance, cost, emissions, and safety. Traditional power-demand-based and fuel-economy-driven ESS sizing and energy management has often led to shortened battery cycle life and higher replacement costs. To consider minimizing the total lifecycle cost (LCC) of hybrid electric propulsion systems, the battery performance degradation and the life prediction model is a critical element in the optimal design process. In this work, a new Li-ion battery (LIB) performance degradation model is introduced based on a large set of cycling experiment data on LiFePO4 (LFP) batteries to predict their capacity decay, resistance increase and the remaining cycle life under various use patterns. Critical parameters of the semi-empirical, amended equivalent circuit model were identified using least-square fitting. The model is used to calculate the investment, operation, replacement and recycling costs of the battery ESS over its lifetime. Validation of the model is made using battery cycling experimental data. The new LFP battery performance degradation model is used in optimizing the sizes of the key hybrid electric powertrain component of an electrified ferry ship with the minimum overall LCC. The optimization result presents a 12 percent improvement over the traditional power demand-driven hybrid powertrain design method. The research supports optimal sizing and EMS development of hybrid electric vehicles and vessels to achieve minimum lifecycle costs.


2018 ◽  
Author(s):  
Umanand L

This article presents a frank and open opinion on the challenges that will be faced in moving towards an electric mass transport ecosystem. World over there is considerable research activity on electric vehicles and hybrid electric vehicles. There seems to be a global effort to move from an ICE driven ecosystem to electric vehicle ecosystem. There is no simple means to make this transition. This road is filled with hurdles and challenges. This paper poses and discusses these challenges and possible solutions for enabling EVs.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5538
Author(s):  
Bảo-Huy Nguyễn ◽  
João Pedro F. Trovão ◽  
Ronan German ◽  
Alain Bouscayrol

Optimization-based methods are of interest for developing energy management strategies due to their high performance for hybrid electric vehicles. However, these methods are often complicated and may require strong computational efforts, which can prevent them from real-world applications. This paper proposes a novel real-time optimization-based torque distribution strategy for a parallel hybrid truck. The strategy aims to minimize the engine fuel consumption while ensuring battery charge-sustaining by using linear quadratic regulation in a closed-loop control scheme. Furthermore, by reformulating the problem, the obtained strategy does not require the information of the engine efficiency map like the previous works in literature. The obtained strategy is simple, straightforward, and therefore easy to be implemented in real-time platforms. The proposed method is evaluated via simulation by comparison to dynamic programming as a benchmark. Furthermore, the real-time ability of the proposed strategy is experimentally validated by using power hardware-in-the-loop simulation.


Sign in / Sign up

Export Citation Format

Share Document