scholarly journals A Survey on Through-the-Road Hybrid Electric Vehicles

Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 879
Author(s):  
Gianfranco Rizzo ◽  
Shayesteh Naghinajad ◽  
Francesco Tiano ◽  
Matteo Marino

Hybrid Electric Vehicles (HEVs) can be divided into three categories according to how the two propulsion systems (the thermal and the electric ones) supply the driving torque to the vehicle. When the torque is supplied only by an electric propulsion system, while the heat engine takes care of generating the electricity needed to operate the system, it is called a hybrid-series. Conversely, when both propulsion systems provide torque, the vehicle is identified with parallel hybrid wording. Among the parallel hybrids there is a particular configuration called Through-the-Road (TTR). In this configuration, the two propulsion systems are not mechanically connected to each other, but it is precisely the road that allows hybrid propulsion. This architecture, dating back to the early twentieth century, is still used by several manufacturers and carries with it peculiar configurations and control methods. It is also a configuration that fits well with the transformation of conventional vehicles into a hybrid. The paper presents a survey of the TTR HEV solution, evidencing applications, potentialities and limits.

Author(s):  
Zhila Pirmoradi ◽  
G. Gary Wang

Plug-in Hybrid Electric Vehicles (PHEVs) bear great promises for increasing fuel economy and decreasing greenhouse gas emissions by the use of advanced battery technologies and green energy resources. The design of a PHEV highly depends on several factors such as the selected powertrain configuration, control strategy, sizes of drivetrain components, expected range for propulsion purely by electric energy, known as AER, and the assumed driving conditions. Accordingly, design of PHEV powertrains for diverse customer segments requires thorough consideration of the market needs and the specific performance expectations of each segment. From the manufacturing perspective, these parameters provide the opportunity of mass customization because of the high degree of freedom, especially when the component sizes and control parameters are simultaneously assessed. Based on a nonconventional sensitivity and correlation analysis performed on a simulation model for power-split PHEVs in this study, the product family design (PFD) concept and its implications will be investigated, and limitations of PFD for such a complex product along with directions for efficient family design of PHEVs will be discussed.


2021 ◽  
Vol 54 (4) ◽  
pp. 599-606
Author(s):  
Punyavathi Ramineni ◽  
Alagappan Pandian

Many pollution-related issues are raising due to the usage of conventional internal combustion engines (ICEs) vehicles. Electric Vehicles/ Hybrid electric vehicles (EVs/HEVs) are the finest solutions to overcome those problems associated with ICE-based vehicles. The EVs are introduced with a signal energy source (SES), which is not a successful attempt, especially during transient vehicles, driving, etc. Multiple energy sources (MES) EVs are introduced to attain better performance than the SES vehicles, which is obtained by combining two sources like battery/fuel cells, ultracapacitor. In this contest, energy management (EMNG) plays a vital role in sharing the load to the sources as per the EVs requirement. In the case of MES-based EVs, the controller always plays a significant role in the related EMNG system because it is the key factor in improving vehicle efficiency. In this article, a study has mainly been done related to several conventional, intelligent controllers and control algorithms to do the proper EMNG between sources present in the EV.


2014 ◽  
Vol 543-547 ◽  
pp. 1246-1249
Author(s):  
Liang Zhang ◽  
Bin Jiao ◽  
Lei Li

The modeling method and control strategy for series hybrid electric vehicles were presented in this paper. Firstly, the system structure and operation principles are discussed systematically; and then a control strategy is proposed based on the modeling of powertrain. Control strategy focus on the multi-modes switch logic and power distribution. In the last part of this paper, the simulation made in MATLAB/Simulink was introduced, which results indicate that the model and control strategy are correct.


2019 ◽  
Author(s):  
V Bolbot ◽  
G Theotokatos ◽  
E Boulougouris ◽  
D Vassalos

Cruise ship industry is rapidly developing, with both the vessels size and number constantly growing up, which renders ensuring passengers, crew and ship safety a paramount necessity. Collision, grounding and fire are among the most frequent accidents on cruise ships with high consequences. In this study, a hazard analysis of diesel-electric and hybrid-electric propulsion system is undertaken using System-Theoretic Process Analysis (STPA). The results demonstrate significant increase in potential hazardous scenarios due to failures in automation and control systems, leading to fire and a higher number of scenarios leading to propulsion and power loss in hybrid-electric propulsion systems than on a conventional cruise-ship propulsion system. Results also demonstrate that STPA enhancement is required to compare the risk of two propulsion systems.


Sign in / Sign up

Export Citation Format

Share Document