scholarly journals Discussões sobre as mudanças climáticas globais: os alarmistas, os céticos e os modelos de previsão do clima

GeoTextos ◽  
2014 ◽  
Vol 10 (1) ◽  
Author(s):  
Francisco Ronnieplex De Moura Cruz ◽  
Letícia Andrade da Silva ◽  
Elisiene De Macêdo Pereira ◽  
Rebecca Luna Lucena

Este ensaio traz à tona questões intrigantes e dúvidas que permeiam as pesquisas voltadas às mudanças climáticas globais, enfatizando as discordâncias existentes entre as distintas correntes de cientistas e os prognósticos elaborados pelos modelos de previsão do clima. Para tanto, tomou-se por base as teorias propagadas por alarmistas e céticos, bem como o prognóstico do Painel Intergovernamental sobre as Mudanças Climáticas (IPCC) de 2007. O ensaio se baseou na análise de livros, relatórios técnicos e artigos científicos, além da interpretação dos gráficos contidos nos mesmos. Os resultados mostraram que sempre houve variação na temperatura da atmosfera, mesmo antes do surgimento do homem e em níveis bem mais elevados do que os atuais. Contudo, alarmistas e céticos concordam que a Terra passou por um aquecimento de cerca de 0,6ºC no século XX, havendo divergência no que diz respeito às causas desse aquecimento, suas consequências, e se ele ainda está ocorrendo. Entretanto, um aspecto que põe em xeque a confiabilidade de ambas as correntes diz respeito ao problema da previsão, pois são muitos os fatores e elementos envolvidos na complexidade do sistema climático, tornando, assim, previsões climáticas exatas praticamente impossíveis, e deixando o debate, até o momento, no campo das suposições. Abstract DISCUSSIONS ABOUT GLOBAL CLIMATE CHANGES: THE ALARMISTS, THE SKEPTICS AND CLIMATE FORECAST MODELS This paper aims to discuss difficult questions and doubts about researches regarding global climate change, showing discordances about what different scientific groups and the forecasts elaborated by forecasting climate models. Therefore, we take for basis the theories formulated by the two scientific groups: the alarmists and skeptics, and the prognostic showed by the Intergovernmental Panel of Climate Change (IPCC), 2007. This work was based in a research of books, technical documents and scientific papers, and the interpretation of graphs and data within these works. The results showed that oscillating temperatures always existed in the Earth’s atmosphere before human existence and the oscillation was larger than today. However, alarmists and skeptics believe that the earth atmosphere’s temperature elevated by approximated 0.6º C in the XX century, but there is a big divergence about the causes that rise and the consequences. Finally, an issue that questions the reliability of both groups, concerns the problem of forecast mainly because there are many factors and elements involved in the complexity of climate system thus making accurate climate predictions virtually impossible and leaving the debate so far, in the field of assumptions.

2012 ◽  
Vol 51 (8) ◽  
pp. 1441-1454 ◽  
Author(s):  
Sachiho A. Adachi ◽  
Fujio Kimura ◽  
Hiroyuki Kusaka ◽  
Tomoshige Inoue ◽  
Hiroaki Ueda

AbstractIn this study, the impact of global climate change and anticipated urbanization over the next 70 years is estimated with regard to the summertime local climate in the Tokyo metropolitan area (TMA), whose population is already near its peak now. First, five climate projections for the 2070s calculated with the aid of general circulation models (GCMs) are used for dynamical downscaling experiments to evaluate the impact of global climate changes using a regional climate model. Second, the sensitivity of future urbanization until the 2070s is examined assuming a simple developing urban scenario for the TMA. These two sensitivity analyses indicate that the increase in the surface air temperature from the 1990s to the 2070s is about 2.0°C as a result of global climate changes under the A1B scenario in the Intergovernmental Panel on Climate Change’s Special Report on Emissions Scenarios (SRES) and about 0.5°C as a result of urbanization. Considering the current urban heat island intensity (UHII) of 1.0°C, the possible UHII in the future reaches an average of 1.5°C in the TMA. This means that the mitigation of the UHII should be one of the ways to adapt to a local temperature increase caused by changes in the future global climate. In addition, the estimation of temperature increase due to global climate change has an uncertainty of about 2.0°C depending on the GCM projection, suggesting that the local climate should be projected on the basis of multiple GCM projections.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Daniel Silander

There is a growing bulk of studies on global climate changes and conflicts. It has been argued that climate change may be a triggering factor to conflicts and wars, especially in societies with poor governance. This study explores the climate-security nexus in Africa. It is argued that the global climate change provides profound state and human security challenges to African governments and people. Scarcity of vital resources in food, water, sanitation and health has challenged political and economic structures, infrastructure and integration. This has also been due to poorly governed states with authoritarianism, corruption, ethnic divisions and fragile, dysfunctional institutions. The war in Darfur is a tragic, but illustrative example of the climate change-security nexus of our time.


2018 ◽  
Vol 14 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Theodore Danso Marfo ◽  
Klement Resjek ◽  
Valerie Vranova

Abstract Ecotones are considered as unique environments. The concepts of edge effect and ecotone species (flora and fauna) are widely used. Considering the fact that the majority of the species found in ecotones are usually at their physiologically determined limits of distribution, how they react to global climate changes becomes crucial. Ecotones are reputed to be more biologically diverse than areas close to them, and therefore possesses a high conservation value, yet little is known on how soil properties vary across ecotones. In this paper, we firstly highlighted the roles ecotones play in assessing the effect on global climate change, the mediatory role they play in the movement of material (water and nutrients) into and out of the region. Secondly, we reviewed studies on how soil properties change across ecotones and it is worthwhile to note that soil properties tend to differ across various ecotones (e.g. increasing pH and decreasing P & N across forest–glade ecotones, decreasing pH across ancient–recent forest ecotones) in a manner that defines the character of the ecotones existing.


2020 ◽  
Author(s):  
Sarah S. Eggleston ◽  
Oliver Bothe ◽  
Nerilie Abram ◽  
Bronwen Konecky ◽  
Hans Linderholm ◽  
...  

<p>The past two thousand years is a key interval for climate science because this period encompasses both the era of human-induced global warming and a much longer interval when changes in Earth's climate were governed principally by natural drivers. This earlier 'pre-industrial' period is particularly important for two reasons. Firstly, we now have a growing number of well-dated, climate sensitive proxy data with high temporal resolution that spans the full period. Secondly, the pre-industrial climate provides context for present-day climate change, sets real-world targets against which to evaluate the performance of climate models, and allows us to address other questions of Earth sciences that cannot be answered using only a century and a half of observational data. </p><p>Here, we first provide several perspectives on the concept of a 'pre-industrial climate'. Then, we highlight the activities of the PAGES 2k Network, an international collaborative effort focused on global climate change during the past two thousand years. We highlight those aspects of pre-industrial conditions (including both past climate changes and past climate drivers) that are not yet well constrained, and suggest potential areas for research during this period that would be relevant to the evolution of Earth's future climate.</p>


2012 ◽  
Vol 93 (4) ◽  
pp. 485-498 ◽  
Author(s):  
Karl E. Taylor ◽  
Ronald J. Stouffer ◽  
Gerald A. Meehl

The fifth phase of the Coupled Model Intercomparison Project (CMIP5) will produce a state-of-the- art multimodel dataset designed to advance our knowledge of climate variability and climate change. Researchers worldwide are analyzing the model output and will produce results likely to underlie the forthcoming Fifth Assessment Report by the Intergovernmental Panel on Climate Change. Unprecedented in scale and attracting interest from all major climate modeling groups, CMIP5 includes “long term” simulations of twentieth-century climate and projections for the twenty-first century and beyond. Conventional atmosphere–ocean global climate models and Earth system models of intermediate complexity are for the first time being joined by more recently developed Earth system models under an experiment design that allows both types of models to be compared to observations on an equal footing. Besides the longterm experiments, CMIP5 calls for an entirely new suite of “near term” simulations focusing on recent decades and the future to year 2035. These “decadal predictions” are initialized based on observations and will be used to explore the predictability of climate and to assess the forecast system's predictive skill. The CMIP5 experiment design also allows for participation of stand-alone atmospheric models and includes a variety of idealized experiments that will improve understanding of the range of model responses found in the more complex and realistic simulations. An exceptionally comprehensive set of model output is being collected and made freely available to researchers through an integrated but distributed data archive. For researchers unfamiliar with climate models, the limitations of the models and experiment design are described.


Author(s):  
D. G. Galkin

The goal of the article is to work out recommendations aimed at providing sustainability of agriculture development on the level of national economy in conditions of changing climate. The agriculture development within the frames of traditional approach can be studied in two aspects: as a sector subjected to the global climate change impact; as a sector promoting climate change due to greenhouse gas emission. The authors showed that in regard to present trends scientific recommendations aimed at agriculture adaptation to climate changes are the most significant for Russia. On the basis of provided concepts they identified key lines in the said adaptation: to develop innovation connected with adaptation to consequences of climate changes; to upgrade the system of agro-insurance; to use methods of organic food production; to monitor and appraise adaptation of agriculture to climate changes; to introduce strategic planning of sustainable development and location of agricultural production. These lines should be realized on the basis of integrity, strategic orientation and scientific support of agricultural production. These lines can stabilize the level of key parameters of the sector in the long-term perspective.


e-CUCBA ◽  
2021 ◽  
Vol 15 (8) ◽  
pp. 1-9
Author(s):  
HECTOR OCAMPO-ALVAREZ ◽  
FABIAN ALEJANDRO RODRÍGUEZ-ZARAGOZA

Coral reefs are highly productive marine ecosystems that harborahigh biodiversity. The forming organisms of these reefs are the scleractinian corals, which form symbiotic interactions with multiple microorganisms. One of the best known symbiotic interactions in these systems is the one established with the microalgae Symbiodinium. The microalgae produce through photosynthesis up to 90% of the energy required by the coral. On the other hand, Symbiodiniumreceives from the coral an appropriate niche, that protects Symbiodiniumfrom the external environment, from the competition with other organisms and predation; it also provides abundant nutrients produced by other coral symbiontshighlighting the bacteria. As well as this, multiple symbiotic interactions confer metabolic capabilities to corals, which have enabled their capacity to adapt to climate changes for millions of years. However, in recent decades coral reef ecosystems are being extensively decimated. Given the new characteristics of an environment with significant changes sometimes somewhat erratic, probably the interactions that initially provided ecological advantages to corals are no longer sufficient to overcome environmental adversities or that as a result of the changes generated in the environment. The diversity of microorganisms capable of interactions that can be formed with the few remaining microorganisms do not confer to the coral, sufficient adaptative advantages to face the challenge of climate change. In this essay, we argue about the possibility that a decrease in the stock of microorganisms capable of interacting with corals, as a result of marine pollution, is a cause of the loss of biological aptitude of corals to survive in the current global climate change.


2021 ◽  
Vol 48 (2) ◽  
pp. 191-198
Author(s):  
Maksym V. Makaida ◽  
Oleksander Y. Pakhomov ◽  
Viktor V. Brygadyrenko

Abstract Global climate change and, specifically, rising temperatures, may increase the number of generations of necrophagous insects. The common green bottle fly Lucilia sericata (Meigen, 1826) (Diptera, Calliphoridae) ranks among the most important cosmopolitan necrophagous insects that utilize corpses and cause myiasis in farm animals and humans. Based on the data simulations, the use of accumulated degree-hours enables to calculate the number of generations of this forensically important species of blowfly with a greater accuracy than before, considering short-term increases of temperature at the boundary of the cold and warm seasons. The number of generations of L. sericata has increased from 7.65 to 8.46 in the Ukrainian steppe zone over the last 15 years, while the active developmental period of this species has increased by 25 days due to earlier start in spring. The average temperature increase of 1 °C increased the number of generations of L. sericata by 0.85. With a global climate change following the Representative Concentration Pathway (RCP) 4.5 scenario (average temperature increase of 2.4 °C), adopted by the Intergovernmental Panel on Climate Change, by 2100 the number of generations of L. sericata in a simulated ecosystem will increase by 2.0 to 9.0 generations per year.


Sign in / Sign up

Export Citation Format

Share Document