Identification of Work Hardening Behavior under Large Strain by Uniaxial Tensile Test Using Digital Image Correlation

2021 ◽  
Vol 62 (727) ◽  
pp. 103-108
Author(s):  
Satoshi SUMIKAWA ◽  
Akinobu ISHIWATARI ◽  
Masaki URABE ◽  
Yoshikiyo TAMAI
2017 ◽  
Vol 2017.92 (0) ◽  
pp. P078
Author(s):  
Keita Suzuki ◽  
Makoto Uchida ◽  
Yoshihisa Kaneko ◽  
Dai Okumura ◽  
Hiro Tanaka ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 15-26
Author(s):  
J.S Kwame ◽  
E. Yakushina ◽  
P. Blackwell

Localised plastic deformation evolution was examined in a near alpha Ti-3Al-2.5V alloy with indent defect and defect free surfaces using digital image correlation, an interrupted uniaxial tensile test and scanning electron microscopy. The main aim was to understand the role of the localised strain evolution at micro scale and the underlying deformation mechanisms that influence the global mechanical behaviour of the material. The microstructures captured at different stages of deformation were processed using a digital image correlation system, whose outputs were analysed through Matlab, to ascertain the localised strain evolution observed in each surface condition. This work found that the strains observed at the deformation bands along the indent defect edge, were significantly higher than those observed in the deformed β phase field. The deformation bands concentrating at the tip of the indent defect acted as a fertile site for early crack nucleation and propagation with a reduced localised fracture strain. For a defect free surface, the absence of defect zones acting as a high stress concentration site meant that strain aggregation was minimised and the α phase field was able to sufficiently accommodate the β phase deformation resulting in higher fracture strains.


2009 ◽  
Vol 28 (6) ◽  
pp. 653-660 ◽  
Author(s):  
F. Grytten ◽  
H. Daiyan ◽  
M. Polanco-Loria ◽  
S. Dumoulin

2019 ◽  
Vol 744 ◽  
pp. 630-637 ◽  
Author(s):  
Jianghua Shen ◽  
Biao Chen ◽  
Junko Umeda ◽  
Jiong Zhang ◽  
Yulong Li ◽  
...  

2013 ◽  
Vol 749 ◽  
pp. 597-600
Author(s):  
Chao He ◽  
Shi Ming Cui ◽  
Yan Zeng Wu ◽  
Ze Fu Luo ◽  
Qing Yuan Wang

The effect of the mechanical heterogeneity on the global and local tensile properties of laser-arc hybrid welded joints in industrial pure aluminum has been investigated. Digital image correlation method has been used during tensile test for mapping the strain distribution and to determine the local stress-strain curves of FZ and HAZ. The tensile properties of the various regions are very heterogeneous and HAZ is the weakest region because of the strain localizes during tensile test. Finite element technique was used to model the global response of welded joint based on local constitutive properties which could be determined from DIC results.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
X. Wu ◽  
J. Shuai ◽  
K. Xu ◽  
Z. Lv

Abstract Although the identification of local constitutive behaviors is possible based on digital image correlation (DIC), few studies have been reported that characterize the properties of the girth-welded joints of pipeline steel. The DIC technique was used to measure the strain fields of undermatched girth-welded joints of X80 pipeline steel under uniaxial tension in this paper. First, microstructure optical observations and micrometer hardness measurements were used to test the size and hardness of the subregions in the specimens. Second, the local strain data in different regions of the girth-welded joint were obtained via DIC technology, and the stress data were obtained via uniaxial tensile tests. Then, the stress–strain relationships of the weld metal (WM), base metal (BM), and subregions of the heat-affected zone (HAZ) of the girth-welded joints of pipeline steel were obtained. Finally, the constitutive parameters of the Ramberg–Osgood model in the different regions were determined by curve fitting of the strain and stress data. The local yield strength, elastic modulus, and hardening exponent of the welded joints were obtained. The yield stresses of the different subregions of the welded steel joint followed the sequence BM > WM > HAZ, which was consistent with the results of the hardness measurements. The hardening exponents of the different subregions of the welded steel joint followed the sequence HAZ > WM> BM.


Author(s):  
Stijn Hertelé ◽  
Timothy Galle ◽  
Koen Van Minnebruggen ◽  
Wim De Waele ◽  
Otto Jan Huising

Standard pipe corrosion assessments are based on simplifying assumptions with respect to corrosion geometry and focus on pressure based loading. Moreover, when corrosion patches traverse girth welds, validity criteria to their assessment become impractically vague. The integrity of girth welds is additionally influenced by axial stresses, which may act in combination with hoop stress resulting from pressure. In an attempt to address these issues, the authors conducted a detailed assessment on a significant, highly irregular corrosion patch traversing a 12″ natural gas pipeline girth weld. The investigation comprises a full scale uniaxial tensile test and supporting detailed finite element (FE) analyses. Hereby, the model mesh adopts detailed geometrical characteristics resulting from a surface profile scan obtained from stereoscopic digital image correlation. The numerical model is validated based on the uniaxial tensile test, in the sense that plastic collapse and highly complex strain distributions are successfully reproduced. Finally, the FE model is used to explore axial tensile failure in presence of internal pressure.


Sign in / Sign up

Export Citation Format

Share Document