scholarly journals Sığırlarda Babesia bovis ve Babesia bigemina’nın Reverse Line Blotting, Nested PCR ve Real Time PCR Teknikleri İle Karşılaştırmalı Tanısı

Author(s):  
Alparslan YILDIRIM ◽  
Önder DÜZLÜ ◽  
Abdullah İNCİ ◽  
Zuhal ÖNDER ◽  
Arif ÇİLOĞLU
Open Medicine ◽  
2007 ◽  
Vol 2 (3) ◽  
pp. 271-279 ◽  
Author(s):  
Koray Ergunay ◽  
Gulcin Altinok ◽  
Bora Gurel ◽  
Ahmet Pinar ◽  
Arzu Sungur ◽  
...  

AbstractIntrauterine Parvovirus B19 infections may cause fetal anemia, non-immune hydrops fetalis or abortion. This study focuses on the pathogenic role of Parvovirus B19 in non-immune hydrops fetalis at Hacettepe University, a major reference hospital in Turkey. Twenty-two cases of non-immune hydrops fetalis were retrospectively selected out of a total of 431 hydrops fetalis specimens from the Department of Pathology archieves. Paraffine embedded tissue sections from placental and liver tissues from each case were evaluated by histopathology, immunohistochemistry, nested PCR and commercial quantitative Real-time PCR. Viral DNA was detected in placental tissues by Real-time PCR in 2 cases (2/22, 9.1%) where histopathology also revealed changes suggestive of Parvovirus B19 infection. No significant histopathologic changes were observed for the remaining sections. Nested PCR that targets the VP1 region of the viral genome and immunohistochemistry for viral capsid antigens were negative for all cases. As a result, Parvovirus B19 is identified as the etiologic agent for the development of non-immune hydrops fetalis for 9.1% of the cases in Hacettepe University, Turkey. Real-time PCR is observed to be an effective diagnostic tool for nucleic acid detection from paraffine embedded tissues. Part of this study was presented as a poster at XIIIth International Congress of Virology, San Francisco, USA (Abstract V-572).


2007 ◽  
Vol 191 (1-4) ◽  
pp. 83-93 ◽  
Author(s):  
M. Muscillo ◽  
M. Pourshaban ◽  
M. Iaconelli ◽  
S. Fontana ◽  
A. Di Grazia ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tsui-Kang Hsu ◽  
Jung-Sheng Chen ◽  
Hsin-Chi Tsai ◽  
Chi-Wei Tao ◽  
Yu-Yin Yang ◽  
...  

AbstractAcanthamoeba spp. are opportunistic human pathogens that cause granulomatous amoebic encephalitis and keratitis, and their accurate detection and enumeration in environmental samples is a challenge. In addition, information regarding the genotyping of Acanthamoeba spp. using various PCR methods is equally critical. Therefore, considering the diverse niches of habitats, it is necessary to develop an even more efficient genotyping method for Acanthamoeba spp. detection. This study improved the sensitivity of detection to avoid underestimation of Acanthamoeba spp. occurrence in aquatic environmental samples, and to accurately define the pathogenic risk by developing an efficient PCR method. In this study, a new nested genotyping method was established and compared with various PCR-based methods using in silico, lab, and empirical tests. The in silico test showed that many PCR-based methods could not successfully align specific genotypes of Acanthamoeba, except for the newly designed nested PCR and real-time PCR method. Furthermore, 52 water samples from rivers, reservoirs, and a river basin in Taiwan were analysed by six different PCR methods and compared for genotyping and detection efficiency of Acanthamoeba. The newly developed nested-PCR-based method of genotyping was found to be significantly sensitive as it could effectively detect the occurrence of Acanthamoeba spp., which was underestimated by the JDP-PCR method. Additionally, the present results are consistent with previous studies indicating that the high prevalence of Acanthamoeba in the aquatic environment of Taiwan is attributed to the commonly found T4 genotype. Ultimately, we report the development of a small volume procedure, which is a combination of recent genotyping PCR and conventional real-time PCR for enumeration of aquatic Acanthamoeba and acquirement of biologically meaningful genotyping information. We anticipate that the newly developed detection method will contribute to the precise estimation, evaluation, and reduction of the contamination risk of pathogenic Acanthamoeba spp., which is regularly found in the water resources utilised for domestic purposes.


Plant Disease ◽  
2018 ◽  
Vol 102 (5) ◽  
pp. 1008-1014 ◽  
Author(s):  
Brian W. Bahder ◽  
Ericka E. Helmick ◽  
De-Fen Mou ◽  
Nigel A. Harrison ◽  
Robert Davis

Phytoplasmas are an economically important group of plant pathogens that negatively impact a wide variety of plants in agricultural and natural ecosystems. In Florida, palm trees are essential elements in the nursery and landscaping industries that suffer from diseases caused by phytoplasmas that are related to each other but are classified in two different subgroups, 16SrIV-A and 16SrIV-D. In this study, a TaqMan assay was developed for digital polymerase chain reaction (dPCR) to detect both palm-infecting phytoplasmas found in Florida. When compared with real-time PCR assays and nested PCR assays, dPCR was capable of detecting the phytoplasmas at much lower concentrations than was possible by using real-time PCR and nested PCR. Additionally, the assay was capable of detecting 16SrIV-B phytoplasma as well as isolates representing the 16SrI and 16SrIII phytoplasma groups. Due to sequence identity of primer annealing regions across diverse phytoplasmas, the assay is likely to be successful for detection of a wide variety of phytoplasmas. The increased sensitivity of this dPCR assay over real-time PCR will allow for earlier detection of phytoplasma infection in palm trees, as well as for screening of salivary glands of candidate insect vector species. These advantages should aid timely management decisions to reduce disease spread and rapid determination of phytoplasma transmission by vectors.


2015 ◽  
Vol 54 (2) ◽  
pp. 162-168 ◽  
Author(s):  
Sha Lu ◽  
Xiqing Li ◽  
Richard Calderone ◽  
Jing Zhang ◽  
Jianchi Ma ◽  
...  

2004 ◽  
Vol 4 (1) ◽  
Author(s):  
Lorenzo Drago ◽  
Alessandra Lombardi ◽  
Elena De Vecchi ◽  
Giuseppe Giuliani ◽  
Rosaria Bartolone ◽  
...  

2004 ◽  
Vol 53 (7) ◽  
pp. 629-632 ◽  
Author(s):  
Thomas Hierl ◽  
Udo Reischl ◽  
Peter Lang ◽  
Holger Hebart ◽  
Maik Stark ◽  
...  

Toxoplasma reactivation is a serious complication in patients receiving allogenic stem cell transplantation. Real-time PCR assays allow a rapid diagnosis of toxoplasma infection; however, no comparative data are available on the performance of real-time PCR protocols under routine conditions. Therefore, the aim of this study was to amplify Toxoplasma gondii DNA from routine samples of allogenic stem cell recipients using two real-time PCR assays on a LightCycler, and using conventional nested PCR. Conventional nested PCR revealed T. gondii DNA in 16 samples. Only 12 of the 16 samples yielded a positive result in both real-time PCRs. The accuracy of the conventional PCR results was demonstrated by direct sequencing. Amplification and detection of the amplicon was completed in only 1 h using the real-time PCR assays. Thus, real-time PCR substantially accelerates the detection of T. gondii DNA in the majority of positive specimens; however, conventional nested PCR is required for detection of T. gondii DNA in some samples.


Sign in / Sign up

Export Citation Format

Share Document