scholarly journals Effects of Couple Stress and Porous Medium on Transient Magneto Peristaltic Flow under the Action of Heat Transfer

2016 ◽  
Vol 12 (04) ◽  
pp. 71-83
Author(s):  
Ahmed M. Abdulhadi ◽  
Alaa Waleed Saleh
2017 ◽  
Vol 22 (2) ◽  
pp. 403-414 ◽  
Author(s):  
G.C. Sankad ◽  
P.S. Nagathan

AbstractAn attempt has been made to examine the effects of magnetohydrodynamic couple stress fluid in peristaltic flow with porous medium under the impact of slip, heat transfer and wall properties. The expressions are obtained for temperature, coefficient of heat transfer and velocity. Influences of different parameters, the Hartmann number, Brinkman number and adaptability parameters on the temperature and warmth trade coefficient are discussed through outlines.


2012 ◽  
Vol 12 (05) ◽  
pp. 1250088 ◽  
Author(s):  
DHARMENDRA TRIPATHI ◽  
O. ANWAR BÉG

This article studies the hydromagnetic peristaltic flow of couple stress fluids through the gap between two concentric channels containing a Darcian porous medium, with the inner channel being rigid. A sinusoidal wave propagates along the outer channel. Long wavelength and low Reynolds number assumptions are used. The effects of couple stress parameter, magnetic field, permeability, and the channel ratio width on pressure and frictional forces on the inner and outer channels are depicted graphically. Mechanical efficiency and trapping are also studied. Pressure diminishes with increasing coupling and permeability parameters whereas it increases with Hartmann number and channel width ratio. Applications of the model include transport of complex bio-waste fluids and magnetic field control of gastro-intestinal disorders.


2018 ◽  
Vol 15 (4) ◽  
pp. 450-467
Author(s):  
K. Ramesh ◽  
M. Devakar

Purpose The main purpose of this paper is to study the effect of heat transfer on the peristaltic flow of a magnetohydrodynamic Walters B fluid through a porous medium in an inclined asymmetric channel. Design/methodology/approach The approximate analytical solutions of the governing partial differential equations are obtained using the regular perturbation method by taking wave number as a small parameter. The solutions for the pressure difference and friction forces are evaluated using numerical integration. Findings It is noticed that the pressure gradient and pressure difference are increasing functions of inclination angle and Grashof number. The temperature and heat transfer coefficients both increase with increase in inclination angle, Darcy number, Grashof number and Prandtl number. Increase in Hartmann number and phase difference decreases the size of trapped bolus. Originality/value The problem is original, as no work has been reported on the effect of magnetohydrodynamics on the peristaltic flow of a Walters B fluid through a porous medium in an inclined asymmetric channel with heat transfer.


Sign in / Sign up

Export Citation Format

Share Document