cortical cell cultures
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 5)

H-INDEX

25
(FIVE YEARS 2)

2020 ◽  
Author(s):  
Peter Verstraelen ◽  
Gerardo Garcia ◽  
Marlies Verschuuren ◽  
Bob Asselbergh ◽  
Rony Nuydens ◽  
...  

AbstractA vast set of neurological disorders is associated with impaired synaptic connectivity. Therefore, modulation of synapse formation could have therapeutic relevance. However, the high density and small size of synapses make their quantification a challenging task. To improve the reliability of synapse-oriented drug screens, we evaluated a panel of synapse-targeting antibodies for their labeling specificity on hippocampal and cortical cell cultures using quantitative immunofluorescence microscopy. For those antibodies that passed multiparametric validation, we assessed pairwise colocalization, an often-used readout for established synapses. We found that even when two pan-synaptic markers were used, the overlap was incomplete, and the presence of spurious signals limited the dynamic range. To circumvent this problem, we implemented a proximity ligation-based approach, that only leads to a signal when two pre- and postsynaptic markers are sufficiently close. We demonstrate that this approach can be applied to different synaptic marker combinations and can be successfully used for quantification of synapse density in cultures of different maturity stage in healthy or pathological conditions. Thus, the unbiased analysis of synapse labeling and exploitation of resident protein proximity, allows increasing the sensitivity of synapse quantifications in neuronal culture and therefore represents a valuable extension of the analytical toolset for in vitro synapse screens.


2019 ◽  
Author(s):  
Hamad Yadikar ◽  
Isabel Torres ◽  
Gabrielle Aiello ◽  
Milin Kurup ◽  
Zhihui Yang ◽  
...  

ABSTRACTTauopathies are a class of neurodegenerative disorders characterized by abnormal deposition of post-translationally modified tau protein in the human brain. Tauopathies are associated with Alzheimer’s disease (AD), chronic traumatic encephalopathy (CTE), and other diseases. Hyperphosphorylation increases tau tendency to aggregate and forms neurofibrillary tangles (NFT), a pathological hallmark of AD. In this study, okadaic acid (OA, 100 nM), a protein phosphatase 1/2A inhibitor, was treated for 24h in mouse neuroblastoma (N2a) and differentiated rat primary neuronal cortical cell cultures (CTX) to induce tau-hyperphosphorylation and oligomerization as a cell-based tauopathy model. Following the treatments, the effectiveness of different kinase inhibitors was assessed using the tauopathy-relevant tau antibodies through tau-immunoblotting, including the sites: pSer202/pThr205 (AT8), pThr181 (AT270), pSer202 (CP13), pSer396/pSer404 (PHF-1), and pThr231 (RZ3). OA-treated samples induced tau phosphorylation and oligomerization at all tested epitopes, forming a monomeric band (46-67 kDa) and oligomeric bands (170 kDa and 240 kDa). We found that TBB (a casein kinase II inhibitor), AR and LiCl (GSK-3 inhibitors), cyclosporin A (calcineurin inhibitor), and Saracatinib (Fyn kinase inhibitor) caused robust inhibition of OA-induced monomeric and oligomeric p-tau in both N2a and CTX culture. Additionally, a cyclin-dependent kinase 5 inhibitor (Roscovitine) and a calcium chelator (EGTA) showed conflicting results between the two neuronal cultures.This study provides a comprehensive view of potential drug candidates (TBB, CsA, AR, and Saracatinib), and their efficacy against tau hyperphosphorylation and oligomerization processes. These findings warrant further experimentation, possibly including animal models of tauopathies, which may provide a putative Neurotherapy for AD, CTE, and other forms of tauopathy-induced neurodegenerative diseases.


Neuroscience ◽  
2019 ◽  
Vol 397 ◽  
pp. 172-183 ◽  
Author(s):  
Sofia Zelleroth ◽  
Erik Nylander ◽  
Fred Nyberg ◽  
Alfhild Grönbladh ◽  
Mathias Hallberg

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jinsong Yang ◽  
Xiaohong Wu ◽  
Haogang Yu ◽  
Xinbiao Liao ◽  
Lisong Teng

The objective of the current research work was to evaluate the neuroprotective effect of the ethanol extract ofScutellaria baicalensis(S.B.) on the excitotoxic neuronal cell death in primary rat cortical cell cultures. The inhibitory effects of the extract were qualitatively and quantitatively estimated by phase-contrast microscopy and lactate dehydrogenase (LDH) assays. The extract exhibited a potent and dose-dependent inhibition of the glutamate-induced excitotoxicity in the culture media. Further, using radioligand binding assays, it was observed that the inhibitory effect of the extract was more potent and selective for the N-methyl-D-aspartate (NMDA) receptor-mediated toxicity. The S.B. ethanol extract competed with [3H] MDL 105,519 for the specific binding to the NMDA receptor glycine site with 50% inhibition occurring at 35.1 μg/mL. Further, NMDA receptor inactivation by the S.B. ethanol extract was concluded from the decreasing binding capability of [3H]MK-801 in the presence of the extract. Thus, S.B. extract exhibited neuroprotection against excitotoxic cell death, and this neuroprotection was mediated through the inhibition of NMDA receptor function by interacting with the glycine binding site of the NMDA receptor. Phytochemical analysis of the bioactive extract revealed the presence of six phytochemical constituents including baicalein, baicalin, wogonin, wogonoside, scutellarin, and Oroxylin A.


2013 ◽  
Vol 9 ◽  
pp. P299-P299
Author(s):  
Wipawan Thangnipon ◽  
Nicha Puangmalai ◽  
Vorapin Chinchalongporn ◽  
Narisorn Kitiyanant ◽  
Patoomratana Tuchinda ◽  
...  

Molecules ◽  
2012 ◽  
Vol 18 (1) ◽  
pp. 354-372 ◽  
Author(s):  
Meng-Shiou Lee ◽  
Jung Chao ◽  
Jiin-Cherng Yen ◽  
Li-Wei Lin ◽  
Fan-Shiu Tsai ◽  
...  

2010 ◽  
Vol 6 ◽  
pp. S530-S530 ◽  
Author(s):  
Wipawan Thangnipon ◽  
Janejira Laohawattanakun ◽  
Patoomratana Tuchinda ◽  
Yoo-Hun Suh ◽  
Bamroong Munyoo

Sign in / Sign up

Export Citation Format

Share Document