primary neuronal culture
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 16)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Jianlan Zhao ◽  
Yinhui Dong ◽  
Xingyu Chen ◽  
Xiao Xiao ◽  
Bo Tan ◽  
...  

The underlying mechanisms of cerebral ischemia/reperfusion (I/R) injury are unclear. Within this study, we aimed to explore whether p53 inhibition exerts protective effects via the p53/PRAS40/mTOR pathway after stroke and its potential mechanism. Both an in vitro oxygen-glucose deprivation (OGD) model with a primary neuronal culture and in vivo stroke models (dMCAO or MCAO) were used. We found that the infarction size, neuronal apoptosis, and autophagy were less severe in p53 KO mice and p53 KO neurons after cerebral I/R or OGD/R injury. By activating the mTOR pathway, p53 knockdown alleviated cerebral I/R injury both in vitro and in vivo. When PRAS40 was knocked out, the regulatory effects of p53 overexpression or knockdown against stroke disappeared. PRAS40 knockdown could inhibit the activities of the mTOR pathway; moreover, neuronal autophagy and apoptosis were exacerbated by PRAS40 knockdown. To sum up, in this study, we showed p53 inhibition protects against neuronal I/R injury after stroke via the p53/PRAS40/mTOR pathway, which is a novel and pivotal cerebral ischemic injury signaling pathway. The induction of neuronal autophagy and apoptosis by the p53/PRAS40/mTOR pathway may be the potential mechanism of this protective effect.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1635
Author(s):  
Chuan-Chuan Chao ◽  
Po-Wen Shen ◽  
Tsai-Yu Tzeng ◽  
Hsing-Jien Kung ◽  
Ting-Fen Tsai ◽  
...  

With an increased life expectancy among humans, aging has recently emerged as a major focus in biomedical research. The lack of in vitro aging models—especially for neurological disorders, where access to human brain tissues is limited—has hampered the progress in studies on human brain aging and various age-associated neurodegenerative diseases at the cellular and molecular level. In this review, we provide an overview of age-related changes in the transcriptome, in signaling pathways, and in relation to epigenetic factors that occur in senescent neurons. Moreover, we explore the current cell models used to study neuronal aging in vitro, including immortalized cell lines, primary neuronal culture, neurons directly converted from fibroblasts (Fib-iNs), and iPSC-derived neurons (iPSC-iNs); we also discuss the advantages and limitations of these models. In addition, the key phenotypes associated with cellular senescence that have been observed by these models are compared. Finally, we focus on the potential of combining human iPSC-iNs with genome editing technology in order to further our understanding of brain aging and neurodegenerative diseases, and discuss the future directions and challenges in the field.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1894
Author(s):  
Abhinav Soni ◽  
Diana Klütsch ◽  
Xin Hu ◽  
Judith Houtman ◽  
Nicole Rund ◽  
...  

Neuronal culture was used to investigate neuronal function in physiological and pathological conditions. Despite its inevitability, primary neuronal culture remained a gold standard method that requires laborious preparation, intensive training, and animal resources. To circumvent the shortfalls of primary neuronal preparations and efficiently give rise to functional neurons, we combine a neural stem cell culture method with a direct cell type-conversion approach. The lucidity of this method enables the efficient preparation of functional neurons from mouse neural progenitor cells on demand. We demonstrate that induced neurons (NPC-iNs) by this method make synaptic connections, elicit neuronal activity-dependent cellular responses, and develop functional neuronal networks. This method will provide a concise platform for functional neuronal assessments. This indeed offers a perspective for using these characterized neuronal networks for investigating plasticity mechanisms, drug screening assays, and probing the molecular and biophysical basis of neurodevelopmental and neurodegenerative diseases.


Author(s):  
Ángela Rodríguez-Prieto ◽  
Ana González-Manteiga ◽  
Yaiza Domínguez-Canterla ◽  
Carmen Navarro-González ◽  
Pietro Fazzari

2020 ◽  
Vol 11 (10) ◽  
Author(s):  
So Yoen Choi ◽  
Ju-Hyun Lee ◽  
Ah-Young Chung ◽  
Youhwa Jo ◽  
Joo-ho Shin ◽  
...  

Abstract Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by progressive loss of motor neurons (MNs) and subsequent muscle weakness. These pathological features are associated with numerous cellular changes, including alteration in mitochondrial morphology and function. However, the molecular mechanisms associating mitochondrial structure with ALS pathology are poorly understood. In this study, we found that Dynamin-related protein 1 (Drp1) was dephosphorylated in several ALS models, including those with SOD1 and TDP-43 mutations, and the dephosphorylation was mediated by the pathological induction of protein phosphatase 1 (PP1) activity in these models. Suppression of the PP1-Drp1 cascade effectively prevented ALS-related symptoms, including mitochondrial fragmentation, mitochondrial complex I impairment, axonal degeneration, and cell death, in primary neuronal culture models, iPSC-derived human MNs, and zebrafish models in vivo. These results suggest that modulation of PP1-Drp1 activity may be a therapeutic target for multiple pathological features of ALS.


iScience ◽  
2020 ◽  
Vol 23 (9) ◽  
pp. 101542
Author(s):  
Peter Verstraelen ◽  
Gerardo Garcia-Diaz Barriga ◽  
Marlies Verschuuren ◽  
Bob Asselbergh ◽  
Rony Nuydens ◽  
...  

Autophagy ◽  
2020 ◽  
pp. 1-19 ◽  
Author(s):  
Amy H. Ponsford ◽  
Thomas A. Ryan ◽  
Andrea Raimondi ◽  
Emanuele Cocucci ◽  
Susanne A. Wycislo ◽  
...  

2020 ◽  
Author(s):  
Thomas D. Prevot ◽  
Akiko Sumitomo ◽  
Toshifumi Tomoda ◽  
Daniel E. Knutson ◽  
Guanguan Li ◽  
...  

ABSTRACTOver the last 15 years, worldwide life expectancy increased by 5 years jumping from 66 years to 71 years. With progress in science, medicine, and care we tend to live longer. Such extended life expectancy is still associated with age-related changes, including in the brain. The aging brain goes through various changes that can be called morphomolecular senescence. Overall, the brain volume changes, neuronal activity is modified and plasticity of the cells diminishes, sometimes leading to neuronal atrophy and death. Altogether, these changes contribute to the emergence of cognitive decline that still does not have an efficient treatment available. Many studies in the context of cognitive decline focused on pathological aging, targeting β-amyloid in Alzheimer’s disease, for example. However, β-amyloid plaques are also present in healthy adults and treatments targeting plaques have failed to improve cognitive functions. In order to improve the quality of life of aging population, it is crucial to focus on the development of novel therapies targeting different systems altered during aging, such as the GABAergic system. In previous studies, it has been shown that positive allosteric modulators (PAM) acting at the α5-containing GABA-A receptors improve cognitive performances, and that these α5-GABA-A receptors are implicated in dendritic growth of pyramidal neurons. Here, we hypothesized that targeting the α5-GABA-A receptors could contribute to the reduction of cognitive decline, directly through activity of the receptors, and indirectly by increasing neuronal morphology. Using primary neuronal culture and chronic treatment in mice, we demonstrated that an α5-PAM increased dendritic length, spine count and spine density in brain regions involved in cognitive processes (prefrontal cortex and hippocampus). We also confirmed the procognitive efficacy of the α5-PAM and showed that the washout period diminishes the precognitive effects without altering the effect on neuronal morphology. Future studies will be needed to investigate what downstream mechanisms responsible for the neurotrophic effect of the α5-PAM.


2020 ◽  
Author(s):  
Peter Verstraelen ◽  
Gerardo Garcia ◽  
Marlies Verschuuren ◽  
Bob Asselbergh ◽  
Rony Nuydens ◽  
...  

AbstractA vast set of neurological disorders is associated with impaired synaptic connectivity. Therefore, modulation of synapse formation could have therapeutic relevance. However, the high density and small size of synapses make their quantification a challenging task. To improve the reliability of synapse-oriented drug screens, we evaluated a panel of synapse-targeting antibodies for their labeling specificity on hippocampal and cortical cell cultures using quantitative immunofluorescence microscopy. For those antibodies that passed multiparametric validation, we assessed pairwise colocalization, an often-used readout for established synapses. We found that even when two pan-synaptic markers were used, the overlap was incomplete, and the presence of spurious signals limited the dynamic range. To circumvent this problem, we implemented a proximity ligation-based approach, that only leads to a signal when two pre- and postsynaptic markers are sufficiently close. We demonstrate that this approach can be applied to different synaptic marker combinations and can be successfully used for quantification of synapse density in cultures of different maturity stage in healthy or pathological conditions. Thus, the unbiased analysis of synapse labeling and exploitation of resident protein proximity, allows increasing the sensitivity of synapse quantifications in neuronal culture and therefore represents a valuable extension of the analytical toolset for in vitro synapse screens.


Sign in / Sign up

Export Citation Format

Share Document