multicarrier system
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 15)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 2128 (1) ◽  
pp. 012004
Author(s):  
Sahar M. Alrabeiy ◽  
Sameh A. Fathy ◽  
Safa M. Gasser ◽  
Mohamed S. El-Mahallawy

Abstract One of the most promising 5G waveform candidates is the universal-filtered multicarrier system (UFMC). The UFMC system reduces the out-of-band (OoB) emission, bringing about higher spectral efficiency. This is assumed to reach robustness against frequency offset and low latency. Although, as aforementioned, the UFMC system offers many advantages, it lacks high peak-to-average power ratio (PAPR) as a multicarrier transmission technique. This research paper tackles two approaches; firstly, RCS, by developing a simulated conventional SLM system, with modifications to generate the same number of waveforms, while using fewer UFMC modulators. Secondly, by developing a simulated conventional SLM system, with modifications using the same number of modulators to generate more waveforms that would be generated in the conventional scheme. The two sets of results from the proposed M-SLM scheme are compared to each other, and to other PAPR reduction schemes using OFDM and UFMC. To reduce PAPR in UFMC systems, (M-SLM) scheme with low complexity is proposed. The essence of the proposed M-SLM scheme is represented in making use of the cyclically shifting process and FMC modulator’s linearity property. The proposed M-SLM scheme uses Um UFMC modulators to produce Uw alternative UFMC waveforms, where Uw = Um (2Um − 1). As a result, drawing a comparison with existing SLM based PAPR reduction schemes for UFMC systems; the proposed M-SLM scheme's computational complexity is reduced. Finally, there is a comparison between the proposed M-SLM scheme and the schemes there in the literature according to PAPR reduction ability.


2021 ◽  
pp. 108434
Author(s):  
Davide Mattera ◽  
Mario Tanda ◽  
Maurice Bellanger

Author(s):  
Suyoto Suyoto ◽  
Agus Subekti ◽  
Arief Suryadi Satyawan ◽  
Vita Awalia Mardiana ◽  
Nasrullah Armi ◽  
...  

In this letter, performance analysis of orthogonal frequency division multiplexing with index modulation (OFDM-IM) is presented in term of bit error rate (BERs). The analysis considers its performance under two impairments, symbol time offset (STO) and carrier frequency offset (CFO) in frequency-selective fading channel. As orthogonal multicarrier system, OFDM-IM is subject to both inter-symbol interference (ISI) and inter-carrier interference (ICI) in a frequency-selective fading channel. OFDM-IM is a new multicarrier communication system, where the active subcarriers indices are used to carry additional bits of information. In general, in the previous existing works, OFDM-IM are evaluated only for near-ideal communication scenarios by only incorporating the CFO factor. In this work, the OFDM-IM performance is investigated and compared with conventional OFDM in the presence of two impairments, STO and CFO. Simulation results show that OFDM-IM outperforms the conventional OFDM with the presence of STO and CFO, especially at high SNR areas.


2021 ◽  
Author(s):  
Feng Hu ◽  
Yuan Lu ◽  
Libiao JIN ◽  
Jianbo Liu ◽  
Zhiping Xia ◽  
...  

Abstract Partial transmit sequence (PTS) technique is a fairly suitable scheme to mitigate the high peak-to-average power ratio (PAPR) problem inherent in 5G multicarrier system-especially considering high-order QAM modulation design. However, the high computational complexity level and the speed of the convergence for optimizing the phases of the transmitting signal restricts this technique in practical applications. In this paper, a low-complexity frequency domain evaluated PTS (F-PTS) based on spacing multi-objective (SMO) processing algorithm is proposed to reduce the PAPR values. The PAPR performance are accurately predicted in terms of modifying relative dispersion in the frequency domain. As a result, the complexity of searching the optimal phase factors and IFFT computing is simplified. Moreover, frequency domain and time domain evaluating PTS (FTD-PTS) is employed to search the optimal solution within reasonable complexity. Simulation results verify that the F-PTS scheme can obtain well secondary peaks with lower computational complexity, and the FTD-PTS scheme effectively reduces PAPR with a faster convergence speed.


Author(s):  
Younes Aimer ◽  
Boubakar Seddik Bouazza ◽  
Smail Bachir ◽  
Claude Duvanaud

AbstractNonlinear behavior and power efficiency of the Power Amplifier (PA) contradictorily depend on the input signal amplitude distribution. The transmitted signal in multi-carrier modulation exhibits high Peak-to-Average Power Ratio (PAPR) and large bandwidths, leading to the degradation of the radio link and additional generation out-of-band interferences, which degrade the quality of the transmission. Practical solutions exist, like a power back-off, but with unacceptable efficiency performances of the transmitter. This paper deals with efficiency and linearity improvement using a new PAPR reduction method based on the combination of Discrete Cosine Transform and shaping technique. The main principle is to determine an optimal coding scheme according to a trade-off between coding complexity and performance benefits in the presence of PA nonlinearities. Simulation and experimental results in the context of OFDM signal and using a 20 W–3.7 GHz Radio-Frequency Power Amplifier show an improvement on PAPR reduction of about 3.25 dB. Also, the communication criteria like Bit Error Rate and Error Vector Magnitude are improved by about one decade and a half and $$8\%$$ 8 % , respectively.


2021 ◽  
Author(s):  
Younes Aimer ◽  
Boubakar Seddik Bouazza ◽  
Smail Bachir ◽  
Claude Duvanaud

Abstract Nonlinear behavior and power efficiency of the Power Amplifier (PA) contradictorily depend on the input signal amplitude distribution. The transmitted signal in multi-carrier modulation exhibits high Peak-to-Average Power Ratio (PAPR) and large bandwidths, leading to the degradation of the radio link and additional generation out-of-band interferences, which degrade the quality of the transmission. Practical solutions exist, like a power back-off, but with unacceptable efficiency performances of the transmitter. This paper deals with efficiency and linearity improvement using a new PAPR reduction method based on the combination of Discrete Cosine Transform (DCT) and shaping technique. The main principle is to determine an optimal coding scheme according to a trade-off between coding complexity and performance benefits in the presence of PA non-linearities. Simulation and experimental results in the context of OFDM signal and using a 20W - 3.7GHz Radio-Frequency Power Amplifier (RF-PA) show an improvement on PAPR reduction of about 3.25dB. Also, the communication criteria like BER (Bit Error Rate) and EVM (Error Vector Magnitude) are improved by about one decade and a half and 8%, respectively.


Sign in / Sign up

Export Citation Format

Share Document