scholarly journals Static Force Analysis of a 3-DOF Robot for Spinal Vertebral Lamina Milling

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Shaodong Li ◽  
Peiyuan Gao ◽  
Hongjian Yu ◽  
Mingqi Chen

In order to realize robot-assisted spinal laminectomy surgery and meet the clinical needs of the robot workspace, including accuracy in human–robot collaboration, an asymmetrical 3-DOF spatial translational robot is proposed, which can realize spinal laminectomy in a fixed posture. First, based on the screw theory, the constraint screw system of the robot was established, and the degree of freedom was derived to verify the spatial translational ability of the robot. Then, a kinematic model of the robot was established, and a static force model of the robot was derived based on the kinematic model. The mathematical relationship between the external force and the joint force/torque was obtained, with the quality of all links considered in the model. Finally, we modeled the robot and imported it into ADAMS to obtain the static force simulation results of the 3D model. The force error was approximately 0.001 N and the torque error was approximately 0.0001 N∙m compared with the simulation results of the mathematical model, accounting for 1% of the joint force/torque, which is acceptable. The result also showed the correctness of the mathematical models, and provides a theoretical basis for motion control and human–robot collaboration.

2010 ◽  
Vol 37-38 ◽  
pp. 608-613
Author(s):  
Jian Yu Bai ◽  
Senlin Tong ◽  
Zai He Yu ◽  
Di Zheng

It is frequently reported by customers that the lower-left and lower-right wheels in the load fork mechanism of a kind of forward-type stacker designed based on static strength analysis are abraded faster than expected. In this paper, we studied by means of kinetics analysis and simulations the forces applied on parts of the fork mechanism. The simulation results show that the maximum values of instantaneous forces during operations are much higher than those derived based static force analysis, and thus explained the reason of the above-mentioned abnormal abrasion. The results also mean that static force analysis is not suitable for part strength design. Instead, one shall adopt kinetics analysis to explore the instantaneous forces in design.


Robotics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 32 ◽  
Author(s):  
Swaminath Venkateswaran ◽  
Damien Chablat ◽  
Frédéric Boyer

Piping inspection robots are of greater importance for industries such as nuclear, chemical and sewage. Mechanisms having closed loop or tree-like structures can be employed in such pipelines owing to their adaptable structures. A bio-inspired caterpillar type piping inspection robot was developed at Laboratoire des Sciences du Numérique de Nantes (LS2N), France. Using DC motors and leg mechanisms, the robot accomplishes the locomotion of a caterpillar in six-steps. With the help of Coulomb’s law of dry friction, a static force model was written and the contact forces between legs of robot and pipeline walls were determined. The actuator forces of the DC motors were then estimated under static phases for horizontal and vertical orientations of the pipeline. Experiments were then conducted on the prototype where the peak results of static force analysis for a given pipe diameter were set as threshold limits to attain static phases inside a test pipeline. The real-time actuator forces were estimated in experiments for similar orientations of the pipeline of static force models and they were found to be higher when compared to the numerical model.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 551 ◽  
Author(s):  
Xiaoyong Wu

Optimal design and singularity analysis are two important aspects of mechanism design, and they are discussed within a spatial parallel manipulator in this work. Resorting to matrix transformation, the parametric kinematic model is established, upon which the inverse position and Jacobian are analyzed. As for optimal design, dexterity and payload indices are taken into consideration. From the simulation results, two optimal configurations are obtained, namely, the star-shaped one and the T-shaped one, and they respectively own the best payload performance and the best dexterity performance. Moreover, the concept of shape singularity is introduced and generalized, which is a special type of singularity that will lead to the singularity in all configurations. The shape singularity of the proposed manipulator is indicated by dexterity index and identified by screw theory. A case study is presented to demonstrate the implication of the shape singularity. Both optimal and singular configurations are useful, and new devices can thus be envisaged for this type of application.


2012 ◽  
Vol 252 ◽  
pp. 134-139
Author(s):  
Jian Jun Hao ◽  
Shuai Shuai Ge ◽  
Xi Hong Zou ◽  
Xiao Hui Ding

Aiming at the problem of long time power interruption and clutch master-slave friction plates wore seriously which greatly shorten the life of clutch during shifting process of AMT, a overrunning AMT without separation process of clutch when shifting is designed. This paper has analyzed structural characteristics and shift principle of overrunning AMT. Through force analysis on the jointing process of roller overrunning clutch, the mathematical model and dynamic model of transmission system are established. Finally, the shifting impact of shifting process is analyzed based on computer simulation. The simulation results indicate that vehicle longitudinal degree of jerk meets the requirement of vehicle comfort.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Guang Ye ◽  
Baihai Zhang ◽  
Senchun Chai ◽  
Lingguo Cui

Wireless sensor networks (WSNs) have gained worldwide attention in recent years. Since WSNs can be conveniently deployed to monitor a given field of interest, they have been considered as a great long-term economic potential for military, environmental, and scientific applications and so forth. One of the most active areas of research in WSNs is the coverage which is one of the most essential functions to guarantee quality of service (QoS) in WSNs. However, less attention is paid on the heterogeneity of the node and the energy balance of the whole network during the redeployment process. In this work, the energy balanced problems in mobile heterogeneous WSNs redeployment have been analyzed. The virtual force algorithm with extended virtual force model is used to improve the QoS of the deployment. Furthermore energy model is added to enhance or limit the movement of the nodes so that the energy of nodes in the whole WSNs can be balanced and the lifetime of the networks can be prolonged. The simulation results verify the effectiveness of this proposed algorithm.


2015 ◽  
Vol 44 (3) ◽  
pp. 262-270 ◽  
Author(s):  
Jun Su ◽  
Markiyan Nakonechnyi ◽  
Orest Ivakhiv ◽  
Anatoliy Sachenko

Mostly the dynamics of controlled objects is often described by nonlinear equalizations. Last years themethodology of neural networks is engaged into designing the systems controlling such objects, in particular due to theinfluence of nonlinearities can be taken into account by nonlinear functions of the activation. Such methodology brings someintelligence to the designed system.Authors proposed the purposeful procedure of forming the structure of the neural controller according the desired lawof the control using the discrete transformation of the motion equation. Requirements to the mathematical model of thereference and method of network training are determined, and the control quality is estimated at traditional passing thedisagreement error in the controller input and for the proposed new configuration of its input circuit, namely with separatedinputs. Simulation results confirmed providing the better quality of the system control.DOI: http://dx.doi.org/10.5755/j01.itc.44.3.7717


Author(s):  
Jennifer E. Holte ◽  
Thomas R. Chase

Abstract A new transmission index based on a static force analysis, the joint-force index, is presented. The joint-force index is an improved transmission index for mechanisms which support external loads. No other transmission index in the literature predicts the effect of specific external loads on the force transmission, even though mechanisms that are subjected to external loads are very common. The joint-force index provides a meaningful transmission guideline regardless of the complexity of the mechanism. Planar four-bar linkages as well as complex planar linkages of six or more links may be evaluated using the joint-force index.


Author(s):  
Maksim Zhmakin ◽  
Irina Chadyuk ◽  
Aleksey Nadymov

A variant of implementation of a communication system with direct spread spectrum is presented in this article, simulation results are also presented, the main parameters of the system are taken, and conclusions are drawn.


Author(s):  
Ge Weiqing ◽  
Cui Yanru

Background: In order to make up for the shortcomings of the traditional algorithm, Min-Min and Max-Min algorithm are combined on the basis of the traditional genetic algorithm. Methods: In this paper, a new cloud computing task scheduling algorithm is proposed, which introduces Min-Min and Max-Min algorithm to generate initialization population, and selects task completion time and load balancing as double fitness functions, which improves the quality of initialization population, algorithm search ability and convergence speed. Results: The simulation results show that the algorithm is superior to the traditional genetic algorithm and is an effective cloud computing task scheduling algorithm. Conclusion: Finally, this paper proposes the possibility of the fusion of the two quadratively improved algorithms and completes the preliminary fusion of the algorithm, but the simulation results of the new algorithm are not ideal and need to be further studied.


2014 ◽  
Vol 945-949 ◽  
pp. 777-780
Author(s):  
Tao Liu ◽  
Yong Xu ◽  
Bo Yuan Mao

Firstly, according to the structure characteristics of precision centrifuge, the mathematical model of its dynamic balancing system was set up, and the dynamic balancing scheme of double test surfaces, double emendation surfaces were established. Then the dynamic balance system controller of precision centrifuge was designed. Simulation results show that the controller designed can completely meet the requirements of precision centrifuge dynamic balance control system.


Sign in / Sign up

Export Citation Format

Share Document