nickel binding
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 20)

H-INDEX

23
(FIVE YEARS 3)

Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 519
Author(s):  
Liliana Anchidin-Norocel ◽  
Wesley K. Savage ◽  
Gheorghe Gutt ◽  
Sonia Amariei

Nickel is naturally present in drinking water and many dietary items, which expose the general population to nickel ingestion. This heavy metal can have a variety of harmful health effects, causing allergies and skin disorders (i.e., dermatitis), lung, cardiovascular, and kidney diseases, and even certain cancers; therefore, nickel detection is important for public health. Recent innovations in the development of biosensors have demonstrated they offer a powerful new approach over conventional analytical techniques for the identification and quantification of user-defined compounds, including heavy metals such as nickel. We optimized five candidate nickel-biosensing receptors, and tested each for efficiency of binding to immobilization elements on screen-printed electrodes (SPEs). We characterized the application of nickel-detecting biosensors with four different cultivated vegetables. We analyzed the efficiency of each nickel-detecting biosensor by potentiostat and atomic absorption spectrometry and compared the results from the sample analytes. We then analyzed the performance characteristics and responses of assembled biosensors, and show they are very effective at measuring nickel ions in food, especially with the urease-alginate biosensor affixed to silver SPEs, measured by cyclic voltammetry (sensitivity—2.1921 µA Mm−1 cm−2 and LOD—0.005 mg/L). Given the many advantages of biosensors, we describe an optimization pipeline approach to the application of different nickel-binding biosensors for public health, nutrition, and consumer safety, which are very promising.


2021 ◽  
Vol 22 (24) ◽  
pp. 13210
Author(s):  
Danuta Witkowska ◽  
Agnieszka Szebesczyk ◽  
Joanna Wątły ◽  
Michał Braczkowski ◽  
Magdalena Rowińska-Żyrek

Combined potentiometric titration and isothermal titration calorimetry (ITC) methods were used to study the interactions of nickel(II) ions with the N-terminal fragments and histidine-rich fragments of Hpn-like protein from two Helicobacter pylori strains (11637 and 26695). The ITC measurements were performed at various temperatures and buffers in order to extract proton-independent reaction enthalpies of nickel binding to each of the studied protein fragments. We bring up the problem of ITC results of nickel binding to the Hpn-like protein being not always compatible with those from potentiometry and MS regarding the stoichiometry and affinity. The roles of the ATCUN motif and multiple His and Gln residues in Ni(II) binding are discussed. The results provided the possibility to compare the Ni(II) binding properties between N-terminal and histidine-rich part of Hpn-like protein and between N-terminal parts of two Hpn-like strains, which differ mainly in the number of glutamine residues.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chinh Tran-To Su ◽  
Wai-Heng Lua ◽  
Jun-Jie Poh ◽  
Wei-Li Ling ◽  
Joshua Yi Yeo ◽  
...  

The binding of nickel by immune proteins can manifest as Type IV contact dermatitis (Ni-specific T cells mediated) and less frequently as Type I hypersensitivity with both mechanisms remaining unknown to date. Since there are reports of patients co-manifesting the two hypersensitivities, a common mechanism may underlie both the TCR and IgE nickel binding. Focusing on Trastuzumab and Pertuzumab IgE variants as serendipitous investigation models, we found Ni-NTA interactions independent of Her2 binding to be due to glutamine stretches. These stretches are both Ni-inducible and in fixed pockets at the antibody complementarity-determining regions (CDRs) and framework regions (FWRs) of both the antibody heavy and light chains with influence from the heavy chain constant region. Comparisons with TCRs structures revealed similar interactions, demonstrating the possible underlying mechanism in selecting for Ni-binding IgEs and TCRs respectively. With the elucidation of the interaction, future therapeutic antibodies could also be sagaciously engineered to utilize such nickel binding for biotechnological purposes.


2021 ◽  
Vol 22 (10) ◽  
pp. 5190
Author(s):  
Chiara Bacchella ◽  
Simone Dell’Acqua ◽  
Stefania Nicolis ◽  
Enrico Monzani ◽  
Luigi Casella

The redox chemistry of copper(II) is strongly modulated by the coordination to amyloid-β peptides and by the stability of the resulting complexes. Amino-terminal copper and nickel binding motifs (ATCUN) identified in truncated Aβ sequences starting with Phe4 show very high affinity for copper(II) ions. Herein, we study the oxidase activity of [Cu–Aβ4−x] and [Cu–Aβ1−x] complexes toward dopamine and other catechols. The results show that the CuII–ATCUN site is not redox-inert; the reduction of the metal is induced by coordination of catechol to the metal and occurs through an inner sphere reaction. The generation of a ternary [CuII–Aβ–catechol] species determines the efficiency of the oxidation, although the reaction rate is ruled by reoxidation of the CuI complex. In addition to the N-terminal coordination site, the two vicinal histidines, His13 and His14, provide a second Cu-binding motif. Catechol oxidation studies together with structural insight from the mixed dinuclear complexes Ni/Cu–Aβ4−x reveal that the His-tandem is able to bind CuII ions independently of the ATCUN site, but the N-terminal metal complexation reduces the conformational mobility of the peptide chain, preventing the binding and oxidative reactivity toward catechol of CuII bound to the secondary site.


Geobiology ◽  
2021 ◽  
Author(s):  
K. M. Sutherland ◽  
L. M. Ward ◽  
C.‐R. Colombero ◽  
D. T. Johnston

2021 ◽  
Author(s):  
Kevin M. Sutherland ◽  
Lewis M. Ward ◽  
Chloé-Rose Colombero ◽  
David T. Johnston

AbstractThe ability of aerobic microorganisms to regulate internal and external concentrations of the reactive oxygen species (ROS) superoxide directly influences the health and viability of cells. Superoxide dismutases (SODs) are the primary regulatory enzymes that are used by microorganisms to degrade superoxide. SOD is not one, but three separate, non-homologous enzymes that perform the same function. Thus, the evolutionary history of genes encoding for different SOD enzymes is one of convergent evolution, which reflects environmental selection brought about by an oxygenated atmosphere, changes in metal availability, and opportunistic horizontal gene transfer (HGT). In this study we examine the phylogenetic history of the protein sequence encoding for the nickel-binding metalloform of the SOD enzyme (SodN). A comparison of organismal and SodN protein phylogenetic trees reveals several instances of HGT, including multiple inter-domain transfers of the sodN gene from the bacterial domain to the archaeal domain. Nearly half of the archaeal members with sodN live in the photic zone of the marine water column. The sodN gene is widespread and characterized by apparent vertical gene transfer in some sediment-associated lineages within the Actinobacteriota (Actinobacteria) and Chloroflexota (Chloroflexi) phyla, suggesting the ancestral sodN likely originated in one of these clades before expanding its taxonomic and biogeographic distribution to additional microbial groups in the surface ocean in response to decreasing iron availability. In addition to decreasing iron quotas, nickel-binding SOD has the added benefit of withstanding high reactant and product ROS concentrations without damaging the enzyme, making it particularly well suited for the modern surface ocean.


2020 ◽  
Vol 10 (24) ◽  
pp. 8995
Author(s):  
Chuang Cheng-Wen ◽  
Hsu Liang-Fong ◽  
Tsai Hsiang-Chun ◽  
Liu Yung-Yu ◽  
Huang Wei-Shiang ◽  
...  

In rivers, the distribution and reactivity of heavy metals (HMs) are affected by their binding affinity with sediment dissolved organic matter (DOM) and particulate organic matter (POM). The HM-OM binding affinity affected by the interaction between DOM and POM is not well studied. This study investigated the Ni binding affinity to size-fractioned overlaying water DOM and alkaline extracted sediment POM solution (AEOM). The DOM/AEOM filtrates (<0.45 μm) were sequentially separated into five nominal molecular weight (MW) solutions. The AEOM optical indicators had lower autochthonous, higher terrestrial sources, and lower aromaticity than the DOM. The Ni mass (72.3 ± 6.4%) was primarily distributed in the low molecular weight DOM (<1 kDa), whereas the Ni (93.5 ± 0.4%) and organic carbon (OC) mass (85.3 ± 1.0%) were predominantly distributed in the high molecular weight AEOM. The Ni and DOM binding affinity, ([Ni]/[DOC])DOM ratio ranging from 0.76 to 27.32 μmol/g-C, was significantly higher than the ([Ni]/[DOC])AEOM ratios, which ranged from 0.64 to 2.64 μmol/g-C. The ([Ni]/[DOC])AEOM ratio correlated significantly with the selected optical indicators (r = 0.87–0.92, p < 0.001), but the ([Ni]/[DOC])DOM ratio correlated weakly with the optical indicators (r = 0.13–0.40, p > 0.05). In the present study, the Ni binding affinity with size-fractioned DOM/AEOM agrees with the hypothesis of the DOM and POM exchange conceptual model in sediment. The POM underwent a hydrolysis/oxidation process; hence, AEOM had a high molecular weight and stable chemical composition and structure. The Ni mainly attached to the high molecular weight AEOM and the ([Ni]/[DOC])AEOM ratios had a strong correlation with the AEOM optical indicators. In contrast, DOM had a high ([Ni]/[DOC])DOM ratio in low molecular weight DOM.


2020 ◽  
pp. jbc.RA120.015459
Author(s):  
Karina A. Baksh ◽  
Dmitry Pichugin ◽  
Robert Scott Prosser ◽  
Deborah B. Zamble

Nickel is essential for the survival of the pathogenic bacteria Helicobacter pylori in the fluctuating pH of the human stomach. Due to its inherent toxicity and limited availability, nickel homeostasis is maintained through a network of pathways that are coordinated by the nickel-responsive transcription factor NikR. Nickel binding to H. pylori NikR (HpNikR) induces an allosteric response favoring a conformation that can bind specific DNA motifs, thereby serving to either activate or repress transcription of specific genes involved in nickel homeostasis and acid adaptation. Here, we examine how nickel induces this response using 19F-NMR, which reveals conformational and dynamic changes associated with nickel-activated DNA complex formation. HpNikR adopts an equilibrium between an open state and DNA binding competent states regardless of nickel binding, but a higher level of dynamics is observed in the absence of metal. Nickel binding shifts the equilibrium toward the binding-competent states and decreases the mobility of the DNA-binding domains. The nickel-bound protein is then able to adopt a single conformation upon binding a target DNA promoter. Zinc, which does not promote high affinity DNA binding, is unable to induce the same allosteric response as nickel. We propose that the allosteric mechanism of nickel-activated DNA binding by HpNikR is driven by conformational selection.


Sign in / Sign up

Export Citation Format

Share Document