scholarly journals Massive Star Cluster Formation and Destruction in Luminous Infrared Galaxies in GOALS. II. An ACS/WFC3 Survey of Nearby LIRGs

2021 ◽  
Vol 923 (2) ◽  
pp. 278
Author(s):  
S. T. Linden ◽  
A. S. Evans ◽  
K. Larson ◽  
G. C. Privon ◽  
L. Armus ◽  
...  

Abstract We present the results of a Hubble Space Telescope WFC3 near-UV and Advanced Camera for Surveys Wide Field Channel optical study into the star cluster populations of a sample of 10 luminous infrared galaxies (LIRGs) in the Great Observatories All-Sky LIRG Survey. Through integrated broadband photometry we have derived ages, masses, and extinctions for a total of 1027 star clusters in galaxies with d L < 110 Mpc in order to avoid issues related to cluster bending. The measured cluster age distribution slope of dN / d τ ∝ τ − 0.5 + / − 0.12 is steeper than what has been observed in lower-luminosity star-forming galaxies. Further, differences in the slope of the observed cluster age distribution between inner- ( dN / d τ ∝ τ − 1.07 + / − 0.12 ) and outer-disk ( dN / d τ ∝ τ − 0.37 + / − 0.09 ) star clusters provide evidence of mass-dependent cluster destruction in the central regions of LIRGs driven primarily by the combined effect of strong tidal shocks and encounters with massive giant molecular clouds. Excluding the nuclear ring surrounding the Seyfert 1 nucleus in NGC 7469, the derived cluster mass function (CMF; dN / dM ∝ M α ) offers marginal evidence for a truncation in the power law at M t ∼ 2×106 M ⊙ for our three most cluster-rich sources, which are all classified as early stage mergers. Finally, we find evidence of a flattening of the CMF slope of dN / dM ∝ M − 1.42 ± 0.1 for clusters in late-stage mergers relative to early stage (α = −1.65 ± 0.02), which we attribute to an increase in the formation of massive clusters over the course of the interaction.

2009 ◽  
Vol 5 (S266) ◽  
pp. 423-426
Author(s):  
Narae Hwang ◽  
Myung Gyoon Lee

AbstractWe present a study of star clusters in the interacting galaxy M51 using a star cluster catalog that includes about 3600 star clusters with mF555W < 23 mag, compiled by Hwang & Lee (2008). Combined with mF336W-band imaging data taken with the Hubble Space Telescope (HST)'s WFPC2 camera, we have derived the ages and masses of star clusters in M51 using theoretical population synthesis models. The cluster age distribution displays multiple peaks that correspond to the epochs of dynamical encounters predicted by theoretical model studies and the cluster-formation rate appears to increase around the same epochs.


2019 ◽  
Vol 14 (S351) ◽  
pp. 143-146
Author(s):  
Zara Randriamanakoto ◽  
Petri Väisänen

AbstractBecause of their young ages and compact densities, young massive star clusters (YMCs) are widely considered as potential proto-globular clusters. They are ubiquitous in environments with ongoing star formation activity such as interacting luminous infrared galaxies. To determine the galactic environmental effects on the star cluster formation and evolution, we study the YMC population of Arp 299 (NGC 3690E/NGC 3690W) using data taken with the HST WFC3/UVIS camera. By fitting the multiband photometry with the Yggdrasil models, we derive the star cluster masses, ages and extinction. While the cluster mass-galactocentric radius relation of NGC 3690E indicates that there could be an influence of the gas density distribution on the cluster formation, the age distribution of the western component suggests that YMCs in that galaxy endure stronger disruption mechanisms. With a cluster formation efficiency of 19 percent, star formation happening in bound clusters in Arp 299 is 3–5 times higher than that of a typical normal spiral.


1988 ◽  
Vol 126 ◽  
pp. 557-558
Author(s):  
Mario Mateo

CCD images and UBV integrated photometry of 31 clusters comprising a magnitude limited sample in a remote northern region of the LMC have provided reliable ages and consistent abundances using isochrone ‘fits’ to deep color-magnitude (CM) diagrams for the 15 clusters with CCD data. Ages for the remaining clusters have been inferred from their integrated colors. The resulting LMC cluster age distribution is markedly different from the age distribution of Galactic clusters suggesting a significant ‘burst’ in the cluster formation rate in the outer LMC 2-4 Gyr ago. The age-metallicity relation (AMR) for our LMC cluster sample is also presented.


2020 ◽  
Vol 645 ◽  
pp. L2
Author(s):  
Friedrich Anders ◽  
Tristan Cantat-Gaudin ◽  
Irene Quadrino-Lodoso ◽  
Mark Gieles ◽  
Carme Jordi ◽  
...  

We perform a systematic reanalysis of the age distribution of Galactic open star clusters. Using a catalogue of homogeneously determined ages for 834 open clusters contained in a 2 kpc cylinder around the Sun and characterised with astrometric and photometric data from the Gaia satellite, we find that it is necessary to revise earlier works that relied on data from the Milky Way Star Cluster survey. After establishing age-dependent completeness limits for our sample, we find that the cluster age function in the range 6.5 <  log t <  10 is compatible with Schechter-type or broken power-law functions. Our best-fit values indicate an earlier drop of the age function (by a factor of 2−3) with respect to the results obtained in the last five years, and are instead more compatible with results obtained in the early 2000s along with radio observations of inner-disc clusters. Furthermore, we find a typical destruction timescale of ∼1.5 Gyr for a 104 M⊙ cluster and a present-day cluster formation rate of 0.55−0.15+0.19 Myr−1 kpc−2, suggesting that only 16−8+11% of all stars born in the solar neighbourhood form in bound clusters. Accurate cluster-mass measurements are now needed to place more precise constraints on open-cluster formation and evolution models.


2009 ◽  
Vol 5 (S266) ◽  
pp. 433-437
Author(s):  
I. S. Konstantopoulos ◽  
N. Bastian ◽  
M. Gieles ◽  
H. J. G. L. M. Lamers

AbstractStar clusters are found in all sorts of environments, and their formation and evolution is inextricably linked to the star-formation process. Their eventual destruction can result from a number of factors at different times, but the process can be investigated as a whole through the study of cluster age distributions. Observations of populous cluster samples reveal a distribution following a power law of index approximately −1. In this work, we use M33 as a test case to examine the age distribution of an archetypal cluster population and show that it is, in fact, the evolving shape of the mass detection limit that defines this trend. That is to say, any magnitude-limited sample will appear to follow a dN/dτ = τ−1 relation, while cutting the sample according to mass gives rise to a composite structure, perhaps implying a dependence of the cluster disruption process on mass. In the context of this framework, we examine different models of cluster disruption from both theoretical and observational perspectives.


2017 ◽  
Vol 843 (2) ◽  
pp. 91 ◽  
Author(s):  
S. T. Linden ◽  
A. S. Evans ◽  
J. Rich ◽  
K. L. Larson ◽  
L. Armus ◽  
...  

2010 ◽  
Vol 6 (S270) ◽  
pp. 483-486 ◽  
Author(s):  
Takayuki R. Saitoh ◽  
Hiroshi Daisaka ◽  
Eiichiro Kokubo ◽  
Junichiro Makino ◽  
Takashi Okamoto ◽  
...  

AbstractWe studied the formation process of star clusters using high-resolutionN-body/smoothed particle hydrodynamics simulations of colliding galaxies. The total number of particles is 1.2×108for our high resolution run. The gravitational softening is 5 pc and we allow gas to cool down to ~10 K. During the first encounter of the collision, a giant filament consists of cold and dense gas found between the progenitors by shock compression. A vigorous starburst took place in the filament, resulting in the formation of star clusters. The mass of these star clusters ranges from 105−8M⊙. These star clusters formed hierarchically: at first small star clusters formed, and then they merged via gravity, resulting in larger star clusters.


1999 ◽  
Vol 190 ◽  
pp. 445-445 ◽  
Author(s):  
Kenneth J. Mighell ◽  
Ata Sarajedini ◽  
Rica S. French

We present our analysis of archival Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) observations in F450W (~B) and F555W (~V) of the intermediate-age populous star clusters NGC 121, NGC 339, NGC 361, NGC 416, and Kron 3 in the Small Magellanic Cloud. We use published photometry of two other SMC populous star clusters, Lindsay 1 and Lindsay 113, to investigate the age sequence of these seven star clusters in order to improve our understanding of the formation chronology of the SMC. We analyzed the V vs B–V and MV vs (B–V)o color-magnitude diagrams of these populous Small Magellanic Cloud star clusters using a variety of techniques and determined their ages, metallicities, and reddenings. These new data enable us to improve the age-metallicity relation of star clusters in the Small Magellanic Cloud. In particular, we find that a closed-box continuous star-formation model does not reproduce the age-metallicity relation adequately. However, a theoretical model punctuated by bursts of star formation is in better agreement with the observational data. The full details of this analysis are reported in Mighell, Sarajedini, & French (1998, AJ, 116, 2395).


2015 ◽  
Vol 24 (3) ◽  
Author(s):  
Guanwen Fang ◽  
Zhongyang Ma ◽  
Yang Chen ◽  
Xu Kong

AbstractUsing the Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3) near-infrared high-resolution imaging from the 3D-HST survey, we analyze the morphology and structure of 502 ultraluminous infrared galaxies (ULIRGs;


Sign in / Sign up

Export Citation Format

Share Document