scholarly journals Visual experience recognition using adaptive support vector machine

Author(s):  
Santhoshkumar SP ◽  
Kumar M Praveen ◽  
Beaulah H Lilly

Video has more information than the isolated images. Processing, analyzing and understanding of contents present in videos are becoming very important. Consumer videos are generally captured by amateurs using handheld cameras of events and it contains considerable camera motion, occlusion, cluttered background, and large intraclass variations within the same type of events, making their visual cues highly variable and less discriminant. So visual event recognition is an extremely challenging task in computer vision. A visual event recognition framework for consumer videos is framed by leveraging a large amount of loosely labeled web videos. The videos are divided into training and testing sets manually. A simple method called the Aligned Space-Time Pyramid Matching method was proposed to effectively measure the distances between two video clips from different domains. Each video is divided into space-time volumes over multiple levels. A new transfer learning method is referred to as Adaptive Multiple Kernel Learning fuse the information from multiple pyramid levels, features, and copes with the considerable variation in feature distributions between videos from two domains web video domain and consumer video domain.With the help of MATLAB Simulink videos are divided and compared with web domain videos. The inputs are taken from the Kodak data set and the results are given in the form of MATLAB simulation.

2020 ◽  
Vol 27 (4) ◽  
pp. 329-336 ◽  
Author(s):  
Lei Xu ◽  
Guangmin Liang ◽  
Baowen Chen ◽  
Xu Tan ◽  
Huaikun Xiang ◽  
...  

Background: Cell lytic enzyme is a kind of highly evolved protein, which can destroy the cell structure and kill the bacteria. Compared with antibiotics, cell lytic enzyme will not cause serious problem of drug resistance of pathogenic bacteria. Thus, the study of cell wall lytic enzymes aims at finding an efficient way for curing bacteria infectious. Compared with using antibiotics, the problem of drug resistance becomes more serious. Therefore, it is a good choice for curing bacterial infections by using cell lytic enzymes. Cell lytic enzyme includes endolysin and autolysin and the difference between them is the purpose of the break of cell wall. The identification of the type of cell lytic enzymes is meaningful for the study of cell wall enzymes. Objective: In this article, our motivation is to predict the type of cell lytic enzyme. Cell lytic enzyme is helpful for killing bacteria, so it is meaningful for study the type of cell lytic enzyme. However, it is time consuming to detect the type of cell lytic enzyme by experimental methods. Thus, an efficient computational method for the type of cell lytic enzyme prediction is proposed in our work. Method: We propose a computational method for the prediction of endolysin and autolysin. First, a data set containing 27 endolysins and 41 autolysins is built. Then the protein is represented by tripeptides composition. The features are selected with larger confidence degree. At last, the classifier is trained by the labeled vectors based on support vector machine. The learned classifier is used to predict the type of cell lytic enzyme. Results: Following the proposed method, the experimental results show that the overall accuracy can attain 97.06%, when 44 features are selected. Compared with Ding's method, our method improves the overall accuracy by nearly 4.5% ((97.06-92.9)/92.9%). The performance of our proposed method is stable, when the selected feature number is from 40 to 70. The overall accuracy of tripeptides optimal feature set is 94.12%, and the overall accuracy of Chou's amphiphilic PseAAC method is 76.2%. The experimental results also demonstrate that the overall accuracy is improved by nearly 18% when using the tripeptides optimal feature set. Conclusion: The paper proposed an efficient method for identifying endolysin and autolysin. In this paper, support vector machine is used to predict the type of cell lytic enzyme. The experimental results show that the overall accuracy of the proposed method is 94.12%, which is better than some existing methods. In conclusion, the selected 44 features can improve the overall accuracy for identification of the type of cell lytic enzyme. Support vector machine performs better than other classifiers when using the selected feature set on the benchmark data set.


2019 ◽  
Vol 21 (9) ◽  
pp. 662-669 ◽  
Author(s):  
Junnan Zhao ◽  
Lu Zhu ◽  
Weineng Zhou ◽  
Lingfeng Yin ◽  
Yuchen Wang ◽  
...  

Background: Thrombin is the central protease of the vertebrate blood coagulation cascade, which is closely related to cardiovascular diseases. The inhibitory constant Ki is the most significant property of thrombin inhibitors. Method: This study was carried out to predict Ki values of thrombin inhibitors based on a large data set by using machine learning methods. Taking advantage of finding non-intuitive regularities on high-dimensional datasets, machine learning can be used to build effective predictive models. A total of 6554 descriptors for each compound were collected and an efficient descriptor selection method was chosen to find the appropriate descriptors. Four different methods including multiple linear regression (MLR), K Nearest Neighbors (KNN), Gradient Boosting Regression Tree (GBRT) and Support Vector Machine (SVM) were implemented to build prediction models with these selected descriptors. Results: The SVM model was the best one among these methods with R2=0.84, MSE=0.55 for the training set and R2=0.83, MSE=0.56 for the test set. Several validation methods such as yrandomization test and applicability domain evaluation, were adopted to assess the robustness and generalization ability of the model. The final model shows excellent stability and predictive ability and can be employed for rapid estimation of the inhibitory constant, which is full of help for designing novel thrombin inhibitors.


2019 ◽  
Vol 15 (4) ◽  
pp. 328-340 ◽  
Author(s):  
Apilak Worachartcheewan ◽  
Napat Songtawee ◽  
Suphakit Siriwong ◽  
Supaluk Prachayasittikul ◽  
Chanin Nantasenamat ◽  
...  

Background: Human immunodeficiency virus (HIV) is an infective agent that causes an acquired immunodeficiency syndrome (AIDS). Therefore, the rational design of inhibitors for preventing the progression of the disease is required. Objective: This study aims to construct quantitative structure-activity relationship (QSAR) models, molecular docking and newly rational design of colchicine and derivatives with anti-HIV activity. Methods: A data set of 24 colchicine and derivatives with anti-HIV activity were employed to develop the QSAR models using machine learning methods (e.g. multiple linear regression (MLR), artificial neural network (ANN) and support vector machine (SVM)), and to study a molecular docking. Results: The significant descriptors relating to the anti-HIV activity included JGI2, Mor24u, Gm and R8p+ descriptors. The predictive performance of the models gave acceptable statistical qualities as observed by correlation coefficient (Q2) and root mean square error (RMSE) of leave-one out cross-validation (LOO-CV) and external sets. Particularly, the ANN method outperformed MLR and SVM methods that displayed LOO−CV 2 Q and RMSELOO-CV of 0.7548 and 0.5735 for LOOCV set, and Ext 2 Q of 0.8553 and RMSEExt of 0.6999 for external validation. In addition, the molecular docking of virus-entry molecule (gp120 envelope glycoprotein) revealed the key interacting residues of the protein (cellular receptor, CD4) and the site-moiety preferences of colchicine derivatives as HIV entry inhibitors for binding to HIV structure. Furthermore, newly rational design of colchicine derivatives using informative QSAR and molecular docking was proposed. Conclusion: These findings serve as a guideline for the rational drug design as well as potential development of novel anti-HIV agents.


2020 ◽  
Vol 16 (8) ◽  
pp. 1088-1105
Author(s):  
Nafiseh Vahedi ◽  
Majid Mohammadhosseini ◽  
Mehdi Nekoei

Background: The poly(ADP-ribose) polymerases (PARP) is a nuclear enzyme superfamily present in eukaryotes. Methods: In the present report, some efficient linear and non-linear methods including multiple linear regression (MLR), support vector machine (SVM) and artificial neural networks (ANN) were successfully used to develop and establish quantitative structure-activity relationship (QSAR) models capable of predicting pEC50 values of tetrahydropyridopyridazinone derivatives as effective PARP inhibitors. Principal component analysis (PCA) was used to a rational division of the whole data set and selection of the training and test sets. A genetic algorithm (GA) variable selection method was employed to select the optimal subset of descriptors that have the most significant contributions to the overall inhibitory activity from the large pool of calculated descriptors. Results: The accuracy and predictability of the proposed models were further confirmed using crossvalidation, validation through an external test set and Y-randomization (chance correlations) approaches. Moreover, an exhaustive statistical comparison was performed on the outputs of the proposed models. The results revealed that non-linear modeling approaches, including SVM and ANN could provide much more prediction capabilities. Conclusion: Among the constructed models and in terms of root mean square error of predictions (RMSEP), cross-validation coefficients (Q2 LOO and Q2 LGO), as well as R2 and F-statistical value for the training set, the predictive power of the GA-SVM approach was better. However, compared with MLR and SVM, the statistical parameters for the test set were more proper using the GA-ANN model.


2020 ◽  
Vol 44 (8) ◽  
pp. 851-860
Author(s):  
Joy Eliaerts ◽  
Natalie Meert ◽  
Pierre Dardenne ◽  
Vincent Baeten ◽  
Juan-Antonio Fernandez Pierna ◽  
...  

Abstract Spectroscopic techniques combined with chemometrics are a promising tool for analysis of seized drug powders. In this study, the performance of three spectroscopic techniques [Mid-InfraRed (MIR), Raman and Near-InfraRed (NIR)] was compared. In total, 364 seized powders were analyzed and consisted of 276 cocaine powders (with concentrations ranging from 4 to 99 w%) and 88 powders without cocaine. A classification model (using Support Vector Machines [SVM] discriminant analysis) and a quantification model (using SVM regression) were constructed with each spectral dataset in order to discriminate cocaine powders from other powders and quantify cocaine in powders classified as cocaine positive. The performances of the models were compared with gas chromatography coupled with mass spectrometry (GC–MS) and gas chromatography with flame-ionization detection (GC–FID). Different evaluation criteria were used: number of false negatives (FNs), number of false positives (FPs), accuracy, root mean square error of cross-validation (RMSECV) and determination coefficients (R2). Ten colored powders were excluded from the classification data set due to fluorescence background observed in Raman spectra. For the classification, the best accuracy (99.7%) was obtained with MIR spectra. With Raman and NIR spectra, the accuracy was 99.5% and 98.9%, respectively. For the quantification, the best results were obtained with NIR spectra. The cocaine content was determined with a RMSECV of 3.79% and a R2 of 0.97. The performance of MIR and Raman to predict cocaine concentrations was lower than NIR, with RMSECV of 6.76% and 6.79%, respectively and both with a R2 of 0.90. The three spectroscopic techniques can be applied for both classification and quantification of cocaine, but some differences in performance were detected. The best classification was obtained with MIR spectra. For quantification, however, the RMSECV of MIR and Raman was twice as high in comparison with NIR. Spectroscopic techniques combined with chemometrics can reduce the workload for confirmation analysis (e.g., chromatography based) and therefore save time and resources.


Author(s):  
Jing Qi ◽  
Kun Xu ◽  
Xilun Ding

AbstractHand segmentation is the initial step for hand posture recognition. To reduce the effect of variable illumination in hand segmentation step, a new CbCr-I component Gaussian mixture model (GMM) is proposed to detect the skin region. The hand region is selected as a region of interest from the image using the skin detection technique based on the presented CbCr-I component GMM and a new adaptive threshold. A new hand shape distribution feature described in polar coordinates is proposed to extract hand contour features to solve the false recognition problem in some shape-based methods and effectively recognize the hand posture in cases when different hand postures have the same number of outstretched fingers. A multiclass support vector machine classifier is utilized to recognize the hand posture. Experiments were carried out on our data set to verify the feasibility of the proposed method. The results showed the effectiveness of the proposed approach compared with other methods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruolan Zeng ◽  
Jiyong Deng ◽  
Limin Dang ◽  
Xinliang Yu

AbstractA three-descriptor quantitative structure–activity/toxicity relationship (QSAR/QSTR) model was developed for the skin permeability of a sufficiently large data set consisting of 274 compounds, by applying support vector machine (SVM) together with genetic algorithm. The optimal SVM model possesses the coefficient of determination R2 of 0.946 and root mean square (rms) error of 0.253 for the training set of 139 compounds; and a R2 of 0.872 and rms of 0.302 for the test set of 135 compounds. Compared with other models reported in the literature, our SVM model shows better statistical performance in a model that deals with more samples in the test set. Therefore, applying a SVM algorithm to develop a nonlinear QSAR model for skin permeability was achieved.


2021 ◽  
Vol 11 (6) ◽  
pp. 701
Author(s):  
Cheng-Hsuan Chen ◽  
Kuo-Kai Shyu ◽  
Cheng-Kai Lu ◽  
Chi-Wen Jao ◽  
Po-Lei Lee

The sense of smell is one of the most important organs in humans, and olfactory imaging can detect signals in the anterior orbital frontal lobe. This study assessed olfactory stimuli using support vector machines (SVMs) with signals from functional near-infrared spectroscopy (fNIRS) data obtained from the prefrontal cortex. These data included odor stimuli and air state, which triggered the hemodynamic response function (HRF), determined from variations in oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) levels; photoplethysmography (PPG) of two wavelengths (raw optical red and near-infrared data); and the ratios of data from two optical datasets. We adopted three SVM kernel functions (i.e., linear, quadratic, and cubic) to analyze signals and compare their performance with the HRF and PPG signals. The results revealed that oxyHb yielded the most efficient single-signal data with a quadratic kernel function, and a combination of HRF and PPG signals yielded the most efficient multi-signal data with the cubic function. Our results revealed superior SVM analysis of HRFs for classifying odor and air status using fNIRS data during olfaction in humans. Furthermore, the olfactory stimulation can be accurately classified by using quadratic and cubic kernel functions in SVM, even for an individual participant data set.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Tawfik Yahya ◽  
Nur Azah Hamzaid ◽  
Sadeeq Ali ◽  
Farahiyah Jasni ◽  
Hanie Nadia Shasmin

AbstractA transfemoral prosthesis is required to assist amputees to perform the activity of daily living (ADL). The passive prosthesis has some drawbacks such as utilization of high metabolic energy. In contrast, the active prosthesis consumes less metabolic energy and offers better performance. However, the recent active prosthesis uses surface electromyography as its sensory system which has weak signals with microvolt-level intensity and requires a lot of computation to extract features. This paper focuses on recognizing different phases of sitting and standing of a transfemoral amputee using in-socket piezoelectric-based sensors. 15 piezoelectric film sensors were embedded in the inner socket wall adjacent to the most active regions of the agonist and antagonist knee extensor and flexor muscles, i. e. region with the highest level of muscle contractions of the quadriceps and hamstring. A male transfemoral amputee wore the instrumented socket and was instructed to perform several sitting and standing phases using an armless chair. Data was collected from the 15 embedded sensors and went through signal conditioning circuits. The overlapping analysis window technique was used to segment the data using different window lengths. Fifteen time-domain and frequency-domain features were extracted and new feature sets were obtained based on the feature performance. Eight of the common pattern recognition multiclass classifiers were evaluated and compared. Regression analysis was used to investigate the impact of the number of features and the window lengths on the classifiers’ accuracies, and Analysis of Variance (ANOVA) was used to test significant differences in the classifiers’ performances. The classification accuracy was calculated using k-fold cross-validation method, and 20% of the data set was held out for testing the optimal classifier. The results showed that the feature set (FS-5) consisting of the root mean square (RMS) and the number of peaks (NP) achieved the highest classification accuracy in five classifiers. Support vector machine (SVM) with cubic kernel proved to be the optimal classifier, and it achieved a classification accuracy of 98.33 % using the test data set. Obtaining high classification accuracy using only two time-domain features would significantly reduce the processing time of controlling a prosthesis and eliminate substantial delay. The proposed in-socket sensors used to detect sit-to-stand and stand-to-sit movements could be further integrated with an active knee joint actuation system to produce powered assistance during energy-demanding activities such as sit-to-stand and stair climbing. In future, the system could also be used to accurately predict the intended movement based on their residual limb’s muscle and mechanical behaviour as detected by the in-socket sensory system.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Jinshan Qi ◽  
Xun Liang ◽  
Rui Xu

By utilizing kernel functions, support vector machines (SVMs) successfully solve the linearly inseparable problems. Subsequently, its applicable areas have been greatly extended. Using multiple kernels (MKs) to improve the SVM classification accuracy has been a hot topic in the SVM research society for several years. However, most MK learning (MKL) methods employ L1-norm constraint on the kernel combination weights, which forms a sparse yet nonsmooth solution for the kernel weights. Alternatively, the Lp-norm constraint on the kernel weights keeps all information in the base kernels. Nonetheless, the solution of Lp-norm constraint MKL is nonsparse and sensitive to the noise. Recently, some scholars presented an efficient sparse generalized MKL (L1- and L2-norms based GMKL) method, in which L1  L2 established an elastic constraint on the kernel weights. In this paper, we further extend the GMKL to a more generalized MKL method based on the p-norm, by joining L1- and Lp-norms. Consequently, the L1- and L2-norms based GMKL is a special case in our method when p=2. Experiments demonstrated that our L1- and Lp-norms based MKL offers a higher accuracy than the L1- and L2-norms based GMKL in the classification, while keeping the properties of the L1- and L2-norms based on GMKL.


Sign in / Sign up

Export Citation Format

Share Document