structural homologues
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 6)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Neeladri Sen ◽  
Ivan Anishchenko ◽  
Nicola Bordin ◽  
Ian Sillitoe ◽  
Sameer Velankar ◽  
...  

Mutations in human proteins lead to diseases. The structure of these proteins can help understand the mechanism of such diseases and develop therapeutics against them. With improved deep learning techniques such as RoseTTAFold and AlphaFold, we can predict the structure of these proteins even in the absence of structural homologues. We modeled and extracted the domains from 553 disease-associated human proteins. We noticed that the model quality was higher and the RMSD lower between AlphaFold and RoseTTAFold models for domains that could be assigned to CATH families as compared to those which could be assigned to Pfam families of unknown structure or could not be assigned to either. We predicted ligand-binding sites, protein-protein interfaces, conserved residues and destabilising effects caused by residue mutations in these predicted structures. We then explored whether the disease-associated mutations were in the proximity of these predicted functional sites or if they destabilized the protein structure based on ddG calculations. We could explain 80% of these disease-associated mutations based on proximity to functional sites or structural destabilization. Usage of models from the two state-of-the-art techniques provide better confidence in our predictions, and we explain 93 additional mutations based on RoseTTAFold models which could not be explained based solely on AlphaFold models.


2021 ◽  
Author(s):  
Stephen T. Joy ◽  
Matthew J. Henley ◽  
Samantha N. De Salle ◽  
Matthew S. Beyersdorf ◽  
Isaac W. Vock ◽  
...  

AbstractThe protein-protein interaction between the KIX motif of the transcriptional coactivator CBP/p300 and the transcriptional activator Myb is a high value target due to its established role in certain acute myeloid leukemias (AML) and potential contributions to other cancers. However, the CBP/p300 KIX domain has multiple binding sites, several structural homologues, many binding partners, and substantial conformational plasticity, making it challenging to specifically target using small molecule inhibitors. Here, we report a picomolar dual-site inhibitor (MybLL-tide) of the Myb-CBP/p300 KIX interaction. MybLL-tide has higher affinity for CBP/p300 KIX than any previously reported compounds while also possessing 16,000-fold selectivity for the CBP/p300 KIX domain over other coactivator domains. MybLL-tide blocks the association of CBP and p300 with Myb in the context of the proteome leading to inhibition of key Myb•KIX-dependent genes in AML cells. These results show that MybLL-tide is an effective, modifiable tool to selectively target the KIX domain and assess transcriptional effects in AML cells and potentially other cancers featuring aberrant Myb behavior. Additionally, the dual-site design has applicability to the other challenging coactivators that bear multiple binding surfaces


2020 ◽  
Vol 30 (2) ◽  
pp. 391-407
Author(s):  
Cullen Demakis ◽  
Matthew C. Childers ◽  
Valerie Daggett

Author(s):  
Erik I. Hallin ◽  
Sigurbjörn Markússon ◽  
Lev Böttger ◽  
Andrew E. Torda ◽  
Clive R. Bramham ◽  
...  

AbstractSynaptic plasticity is vital for brain function and memory formation. One of the key proteins in long-term synaptic plasticity and memory is the activity-regulated cytoskeleton-associated protein (Arc). Mammalian Arc forms virus-like capsid-like structures in a process requiring the N-terminal domain and contains two C-terminal lobes that are structural homologues to retroviral capsids. Drosophila has two isoforms of Arc, dArc1 and dArc2, with low sequence similarity to mammalian Arc, but lacking the mammalian Arc N-terminal domain. Both dArc isoforms have a capsid homology domain consisting of N- and C-terminal lobes. We carried out structural characterization of the four individual dArc lobe domains. As opposed to the corresponding mammalian Arc lobe domains, which are monomeric, the dArc lobes were all oligomeric in solution, indicating a strong propensity for homophilic interactions. The N-lobe from dArc2 formed a domain-swapped dimer in the crystal structure, resulting in a novel dimer interaction that could be relevant for capsid assembly or other dArc functions. This domain-swapped structure resembles the dimeric protein C of flavivirus capsids, as well as the structure of histones dimers, domain-swapped transcription factors, and membrane-interacting BAK domains. The strong oligomerization properties of the isolated dArc lobe domains explain the ability of dArc to form capsids in the absence of any large N-terminal domain, in contrast to the mammalian protein.


2020 ◽  
Author(s):  
Md. Kamrul Hasan ◽  
Mohammad Kamruzzaman ◽  
Omar Hamza Bin Manjur ◽  
Araf Mahmud ◽  
Nazmul Hussain ◽  
...  

Abstract It’s been more than 8 months since COVID-19 became a pandemic and scientists all over the world are struggling to find suitable solutions to combat it. Multiple repurposed drugs have already been in several trials or recently completed. However, none of them shows any promising effect in combating COVID-19. Therefore, developing an effective drug is an unmet global need. RdRP (RNA dependent RNA polymerase) plays a pivotal role in viral replication therefore, it is considered as a prime target of drugs that may treat COVID-19. In this study, we have screened a library of compounds, containing approved RdRP inhibitor drugs in use to treat other viruses (Favipiravir, Sofosbuvir, Ribavirin, Lopinavir, Tenofovir, Ritonavir, Galidesivir and Remdesivir) and their structural homologues, in order to identify potential inhibitors of SARS-Cov-2 RdRP. Extensive screening, molecular docking and molecular dynamics show that five structural analogues have notable inhibitory effects against RdRP of SARS-Cov-2. Importantly, comparative protein-antagonists interaction revealed that these compounds fit well in the pocket of RdRP. ADMET analysis of these compounds suggests their potency as drug candidates. Our identified compounds may serve as potential therapeutics for COVID-19.


2020 ◽  
Vol 3 (8) ◽  
pp. e202000776
Author(s):  
Hongwen Chen ◽  
Yang Liu ◽  
Xiaochun Li

Hedgehog (HH) signaling is essential for metazoan development. The HH ligand is secreted into the extracellular space by a cell surface protein named Dispatched-1 (DISP1). Here, we report the cryo-EM structure of human DISP1 protein. DISP1 contains 12 transmembrane helices (TMs) and two extracellular domains (ECDs). Its ECDs reveal an open state, in contrast to its structural homologues PTCH1 and NPC1, whose extracellular/luminal domains adopt a closed state. The low-resolution structure of the DISP1 complex with dual lipid-modified HH ligand reveals how the ECDs of DISP1 engage with HH ligand. Moreover, several cholesterol-like molecules are found in the TMs, implying a transport-like function of DISP1.


FEBS Open Bio ◽  
2017 ◽  
Vol 7 (10) ◽  
pp. 1480-1498 ◽  
Author(s):  
Joseph Irvin ◽  
Alexander J. Ropelewski ◽  
John Perozich

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
An Van den Bossche ◽  
Steven W Hardwick ◽  
Pieter-Jan Ceyssens ◽  
Hanne Hendrix ◽  
Marleen Voet ◽  
...  

In all domains of life, the catalysed degradation of RNA facilitates rapid adaptation to changing environmental conditions, while destruction of foreign RNA is an important mechanism to prevent host infection. We have identified a virus-encoded protein termed gp37/Dip, which directly binds and inhibits the RNA degradation machinery of its bacterial host. Encoded by giant phage фKZ, this protein associates with two RNA binding sites of the RNase E component of the Pseudomonas aeruginosa RNA degradosome, occluding them from substrates and resulting in effective inhibition of RNA degradation and processing. The 2.2 Å crystal structure reveals that this novel homo-dimeric protein has no identifiable structural homologues. Our biochemical data indicate that acidic patches on the convex outer surface bind RNase E. Through the activity of Dip, фKZ has evolved a unique mechanism to down regulate a key metabolic process of its host to allow accumulation of viral RNA in infected cells.


Sign in / Sign up

Export Citation Format

Share Document