scholarly journals Sensitivity and Efficiency of the Frequency Shift Coefficient Based on the Damage Identification Algorithm: Modeling Uncertainty on Natural Frequencies

Vibration ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 59-79
Author(s):  
Anurag Dubey ◽  
Vivien Denis ◽  
Roger Serra

Health surveillance in industries is an important prospect to ensure safety and prevent sudden collapses. Vibration Based Structure Health Monitoring (VBSHM) is being used continuously for structures and machine diagnostics in industry. Changes in natural frequencies are frequently used as an input parameter for VBSHM. In this paper, the Frequency Shift Coefficient (FSC) is used for the assessment of various numerical damaged cases. An FSC-based algorithm is employed in order to estimate the positions and severity of damages using only the natural frequencies of healthy and unknown (damaged) structures. The study focuses on cantilever beams. By considering the minimization of FSC, damage positions and severity are obtained. Artificially damaged cases are assessed by changes in its positions, the number of damages and the size of damages along with the various parts of the cantilever beam. The study is further investigated by considering the effect of uncertainty on natural frequencies (0.1%, 0.2% and 0.3%) in damaged cases, and the algorithm is used to estimate the position and severity of the damage. The outcomes and efficiency of the proposed FSC based method are evaluated in order to locate and quantify damages. The efficiency of the algorithm is demonstrated by locating and quantifying double damages in a real cantilever steel beam using vibration measurements.

2011 ◽  
Vol 94-96 ◽  
pp. 718-723
Author(s):  
Jian Hua Zhao ◽  
Ling Zhang

A two-step damage identification method based on elemental modal strain energies and natural frequencies has been presented for a beam-like structure. In the first stage, this method makes use of the change of elemental modal strain energy before and after damage to locate the potential damage regions. And in the second stage, a damage identification algorithm based on the frequency changes is developed to calculate the damage extent and further determine the actual damage locations. The performance of the proposed method is numerically demonstrated by a simply supported beam with two damage cases. Results indicate that the method can identify the damage location and quantify the damage severity accurately in a beam-like structure.


2020 ◽  
Vol 10 (23) ◽  
pp. 8717
Author(s):  
Anurag Dubey ◽  
Vivien Denis ◽  
Roger Serra

Vibration-based structural health monitoring is an efficient way to diagnose damage and structural integrity at the earliest stage. In this paper, a new strategy is developed for damage localization and estimation, as well as damage properties identification for a rectangular geometry damage using only eigenfrequencies of the healthy and damaged structure. This strategy is applied to a cantilever beam. In this framework, a damage library is built by correlating 2D and 3D finite element models. The correlation is done by minimizing a so-called frequency shift coefficient. The proposed strategy also uses the frequency shift coefficient to correlate a 2D damaged model with an unknown beam case. The 2D damage, represented by a bending stiffness reduction, is then associated to a 3D damage by employing the damage library. Numerical cases with single and double damage of varying position and severity are tested and used to validate the approach. Finally, experimental results are proposed that show the relevance of the strategy.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 515 ◽  
Author(s):  
Long Zhao ◽  
Xinbo Huang ◽  
Ye Zhang ◽  
Yi Tian ◽  
Yu Zhao

In this paper, we present a vibration-based transmission tower structural health monitoring system consisting of two parts that identifies structural changes in towers. An accelerometer group realizes vibration response acquisition at different positions and reduces the risk of data loss by data compression technology. A solar cell provides the power supply. An analyser receives the data from the acceleration sensor group and calculates the transmission tower natural frequencies, and the change in the structure is determined based on natural frequencies. Then, the data are sent to the monitoring center. Furthermore, analysis of the vibration signal and the calculation method of natural frequencies are proposed. The response and natural frequencies of vibration at different wind speeds are analysed by time-domain signal, power spectral density (PSD), root mean square (RMS) and short-time Fouier transform (STFT). The natural frequency identification of the overall structure by the stochastic subspace identification (SSI) method reveals that the number of natural frequencies that can be calculated at different wind speeds is different, but the 2nd, 3rd and 4th natural frequencies can be excited. Finally, the system was tested on a 110 kV experimental transmission line. After 18 h of experimentation, the natural frequency of the overall structure of the transmission tower was determined before and after the tower leg was lifted. The results show that before and after the tower leg is lifted, the natural frequencies of each order exhibit obvious changes, and the differences in the average values can be used as the basis for judging the structural changes of the tower.


2007 ◽  
Vol 129 (6) ◽  
pp. 771-783 ◽  
Author(s):  
L. J. Jiang ◽  
J. Tang ◽  
K. W. Wang

The concept of using sensitivity-enhancing feedback control to improve the performance of frequency-shift-based structural damage identification has been recently explored. In previous studies, however, the feedback controller is designed to alter only the closed-loop eigenvalues, and the effect of closed-loop eigenvectors on the sensitivity enhancement performance has not been considered. In this research, it is shown that the sensitivity of the natural frequency shift to the damage in a multi-degree-of-freedom structure can be significantly influenced by the placement of both the eigenvalues and the eigenvectors. A constrained optimization problem is formulated to find the optimal assignment of both the closed-loop eigenvalues and eigenvectors, and then an optimal sensitivity-enhancing control is designed to achieve the desired closed-loop eigenstructure. Another advantage of this scheme is that the dataset of frequency measurement for damage identification can be enlarged by utilizing a series of closed-loop controls, which can be realized by activating different combinations of actuators in the system. Therefore, by using this proposed idea of multiple sensitivity-enhancing feedback controls, we can simultaneously address the two major limitations of frequency-shift-based damage identification: the low sensitivity of frequency shift to damage effects and the deficiency of frequency measurement data. A series of case studies are performed. It is demonstrated that the sensitivity of natural frequency shift to stiffness reduction can be significantly enhanced by using the designed sensitivity-enhancing feedback control, where the optimal placement of closed-loop eigenvectors plays a very important role. It is further verified that such sensitivity enhancement can directly benefit the damage identification accuracy and robustness.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ivana Mekjavić

The present research aims to develop an effective and applicable structural damage detection method. A damage identification approach using only the changes of measured natural frequencies is presented. The structural damage model is assumed to be associated with a reduction of a contribution to the element stiffness matrix equivalent to a scalar reduction of the material modulus. The computational technique used to identify the damage from the measured data is described. The performance of the proposed technique on numerically simulated real concrete girder bridge is evaluated using imposed damage scenarios. To demonstrate the applicability of the proposed method by employing experimental measured natural frequencies this technique is applied for the first time to a simply supported reinforced concrete beam statically loaded incrementally to failure. The results of the damage identification procedure show that the proposed method can accurately locate the damage and predict the extent of the damage using high-frequency (here beyond the 4th order) vibrational responses.


2018 ◽  
Vol 95 ◽  
pp. 1-13 ◽  
Author(s):  
Mario A. de Oliveira ◽  
Nelcileno V.S. Araujo ◽  
Daniel J. Inman ◽  
Jozue Vieira Filho

Sign in / Sign up

Export Citation Format

Share Document