twistor theory
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 4)

H-INDEX

17
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Kirill Krasnov ◽  
Evgeny Skvortsov ◽  
Tung Tran

Abstract Higher Spin Gravities are scarce, but covariant actions for them are even scarcer. We construct covariant actions for contractions of Chiral Higher Spin Gravity that represent higher spin extensions of self-dual Yang-Mills and self-dual Gravity theories. The actions give examples of complete higher spin theories both in flat and (anti)-de Sitter spaces that feature gauge and gravitational interactions. The actions are based on a new description of higher spin fields, whose origin can be traced to early works on twistor theory. The new description simplifies the structure of interactions. In particular, we find a covariant form of the minimal gravitational interaction for higher spin fields both in flat and anti-de Sitter space, which resolves some of the puzzles in the literature.



Philosophies ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 55
Author(s):  
Rainer E. Zimmermann

Given the idea that Life as we know it is nothing but a special form of a generically underlying dynamical structure within the physical Universe, we try to introduce a concept of Life that is not only derived from first principles of fundamental physics, but also metaphysically based on philosophical assumptions about the foundations of the world. After clarifying the terminology somewhat, especially with a view to differentiating reality from modality, we give an example for a mathematical representation of what the substance of reality (in the traditional sense of metaphysics) could actually mean today, discussing twistor theory as an example. We then concentrate on the points of structural emergence by discussing the emergence of dynamical systems and of Life as we know it, respectively. Some further consequences as they relate to meaning are discussed in the end.



2021 ◽  
pp. 2150056
Author(s):  
Rouzbeh Mohseni ◽  
Robert A. Wolak

The theory of twistors on foliated manifolds is developed. We construct the twistor space of the normal bundle of a foliation. It is demonstrated that the classical constructions of the twistor theory lead to foliated objects and permit to formulate and prove foliated versions of some well-known results on holomorphic mappings. Since any orbifold can be understood as the leaf space of a suitably defined Riemannian foliation we obtain orbifold versions of the classical results as a simple consequence of the results on foliated mappings.





Mathematika ◽  
2020 ◽  
Vol 67 (1) ◽  
pp. 54-60
Author(s):  
Radu Pantilie


2018 ◽  
Author(s):  
Timothy Adamo
Keyword(s):  


Author(s):  
Michael Atiyah ◽  
Maciej Dunajski ◽  
Lionel J. Mason

We review aspects of twistor theory, its aims and achievements spanning the last five decades. In the twistor approach, space–time is secondary with events being derived objects that correspond to compact holomorphic curves in a complex threefold—the twistor space. After giving an elementary construction of this space, we demonstrate how solutions to linear and nonlinear equations of mathematical physics—anti-self-duality equations on Yang–Mills or conformal curvature—can be encoded into twistor cohomology. These twistor correspondences yield explicit examples of Yang–Mills and gravitational instantons, which we review. They also underlie the twistor approach to integrability: the solitonic systems arise as symmetry reductions of anti-self-dual (ASD) Yang–Mills equations, and Einstein–Weyl dispersionless systems are reductions of ASD conformal equations. We then review the holomorphic string theories in twistor and ambitwistor spaces, and explain how these theories give rise to remarkable new formulae for the computation of quantum scattering amplitudes. Finally, we discuss the Newtonian limit of twistor theory and its possible role in Penrose’s proposal for a role of gravity in quantum collapse of a wave function.



2017 ◽  
Author(s):  
Stephen Huggett
Keyword(s):  




Sign in / Sign up

Export Citation Format

Share Document