phylogenetic comparison
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 28)

H-INDEX

33
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Jack Adderley ◽  
Christian Doerig

Abstract Background: Novel antimalarials should be effective across all species of malaria parasites that infect humans, especially the two species that bear the most impact, Plasmodium falciparum and Plasmodium vivax. Protein kinases encoded by pathogens, as well as host kinases required for survival of intracellular pathogens, carry considerable potential as targets for antimalarial intervention 1,2. To date, no comprehensive P. vivax kinome assembly has been conducted; and the P. falciparum kinome, first assembled in 2004, requires an update. The present study, aimed to fill these gaps, utilises a recently published structurally-validated multiple sequence alignment (MSA) of the human kinome 3. This MSA is used as a scaffold to assist the alignment of all protein kinase sequences from P. falciparum and P. vivax, and (where possible) their assignment to specific kinase groups/families.Results: We were able to assign six P. falciparum previously classified as OPK or ‘orphans’ (i.e. with no clear phylogenetic relation to any of the established ePK groups) to one of the aforementioned ePK groups. Direct phylogenetic comparison established that despite an overall high level of similarity between the P. falciparum and P. vivax kinomes, which will help in selecting targets for intervention, there are differences that may underlie the biological specificities of these species. Furthermore, we highlight a number of Plasmodium kinases that have a surprisingly high level of homology with their human counterparts and therefore not well suited as targets for drug discovery.Conclusions: Direct comparison of the kinomes of Homo sapiens, P. falciparum and P. vivax sheds additional light on the previously documented divergence of many P. falciparum and P. vivax kinases from those of their human host. We provide the first direct kinome comparison between the phylogenetically distinct species of P. falciparum and P. vivax, illustrating the key similarities and differences which must be considered in the context of kinase-directed antimalarial drug discovery, and discuss the divergences and similarities between the human and Plasmodium kinomes to inform future searches for selective antimalarial intervention.


2021 ◽  
Author(s):  
A. Barany ◽  
C. A. Shaughnessy ◽  
R. M. Pelis ◽  
J. Fuentes ◽  
J. M. Mancera ◽  
...  

Abstract Two ncc orthologues (termed ncca and nccb) were found in the sea lamprey genome, whereas nkcc2 was not. In a phylogenetic comparison among other vertebrate amino acids, NCC and NKCC deduced sequences, the sea lamprey NCC’s occupied basal positions within the NCC clade. In freshwater, ncca mRNA was found only in the gill and nccb only in the intestine, whereas both were found in the kidney. Acclimation to seawater increased nccb mRNA in the intestine and kidney. Intestinal nccb mRNA also increased during late metamorphosis. The electrophysiological approach in the Ussing chamber of intestinal tissue ex vivo showed significant differences between freshwater and seawater-acclimated juveniles. Luminal application of indapamide (NCC inhibitor) resulted in 73 and 30% inhibition of short-circuit current (Isc) in the proximal and distal intestine, respectively. The luminal application of bumetanide (NKCC inhibitor) did not affect intestinal Isc. Indapamide also inhibited ex vivo intestinal water absorption. Our results indicate that NCCb is likely the key passive ion cotransporter protein for ion uptake by the lamprey intestine to facilitate water absorption in seawater. As such, the preparatory increases in intestinal nccb mRNA expression during metamorphosis are likely critical to the development of whole animal salinity tolerance.


Author(s):  
Zimiao Zhao ◽  
Jianqing Zhu ◽  
Ary A Hoffmann ◽  
Lijun Cao ◽  
Li Shen ◽  
...  

Abstract Wolbachia is arguably one of the most ubiquitous heritable symbionts among insects and understanding its transmission dynamics is crucial for understanding why it is so common. While previous research has studied the transmission pathways of Wolbachia in several insect lineages including Lepidoptera, this study takes advantage of data collected from the lepidopteran tribe Aeromachini in an effort to assess patterns of transmission. Twenty-one of the 46 species of Aeromachini species were infected with Wolbachia. Overall, 25% (31/125) of Aeromachini specimens tested were Wolbachia positive. All Wolbachia strains were species specific except for the wJho strain which appeared to be shared by three host species with a sympatric distribution based on a co-phylogenetic comparison between Wolbachia and the Aeromachini species. Two tests of phylogenetic congruence did not find any evidence for cospeciation between Wolbachia strains and their butterfly hosts. The co-phylogenetic comparison, divergence time estimation and Wolbachia recombination analysis revealed that Wolbachia acquisition in Aeromachini appears to have mainly occurred mainly through horizontal transmission rather than codivergence.


Virus Genes ◽  
2021 ◽  
Author(s):  
Andrzej Jakubczak ◽  
Marek Kowalczyk ◽  
Ilona Mazurkiewicz ◽  
Marcin Kondracki

AbstractMink astrovirus infection remains a poorly understood disease entity, and the aetiological agent itself causes disease with a heterogeneous course, including gastrointestinal and neurological symptoms. This paper presents cases of astrovirus infection in mink from continental Europe. RNA was isolated from the brains and intestines of animals showing symptoms typical of shaking mink syndrome (n = 6). RT-PCR was used to amplify astrovirus genetic material, and the reaction products were separated on a 1% agarose gel. The specificity of the reaction was confirmed by sequencing fragment coding RdRP protein (length of sequencing product 170 bp) from all samples. The presence of astrovirus RNA was detected in each of the samples tested. Sequencing and bioinformatic analysis indicated the presence of the same variant of the virus in all samples. Comparison of the variant with the sequences available in bioinformatics databases confirmed that the Polish isolates form a separate clade, closely related to Danish isolates. The dissimilarity of the Polish variant to those isolated in other countries ranged from 2.4% (in relation to Danish isolates) to 7.1% (in relation to Canadian isolates). Phylogenetic relationships between variants appear to be associated with the geographic distances between them. To our knowledge, this work describes the first results on the molecular epidemiology of MAstV in continental Europe. The detection of MAstV in Central Europe indicates the need for further research to broaden our understanding of the molecular epidemiology of MAstV in Europe.


2021 ◽  
Vol 22 (4) ◽  
pp. 1904
Author(s):  
Wenna Shao ◽  
Wang Chen ◽  
Xiaoguo Zhu ◽  
Xiaoyi Zhou ◽  
Yingying Jin ◽  
...  

14-3-3 proteins are a large multigenic family of general regulatory factors (GRF) ubiquitously found in eukaryotes and play vital roles in the regulation of plant growth, development, and response to stress stimuli. However, so far, no comprehensive investigation has been performed in the hexaploid wheat. In the present study, A total of 17 potential 14-3-3 gene family members were identified from the Chinese Spring whole-genome sequencing database. The phylogenetic comparison with six 14-3-3 families revealed that the majority of wheat 14-3-3 genes might have evolved as an independent branch and grouped into ε and non-ε group using the phylogenetic comparison. Analysis of gene structure and motif indicated that 14-3-3 protein family members have relatively conserved exon/intron arrangement and motif composition. Physical mapping showed that wheat 14-3-3 genes are mainly distributed on chromosomes 2, 3, 4, and 7. Moreover, most 14-3-3 members in wheat exhibited significantly down-regulated expression in response to alkaline stress. VIGS assay and protein-protein interaction analysis further confirmed that TaGRF6-A positively regulated slat stress tolerance by interacting with a MYB transcription factor, TaMYB64. Taken together, our findings provide fundamental information on the involvement of the wheat 14-3-3 family in salt stress and further investigating their molecular mechanism.


2020 ◽  
Vol 64 (4) ◽  
pp. 63-70
Author(s):  
C. S. Ibe ◽  
E. Ikpegbu ◽  
O. Ogbonnaya

AbstractIn order to meet the increasing protein and income demand in Africa due to the rapid population growth, wildlife, such as the African grasscutter, is currently bred and domesticated as microlivestock. This study is one of the series on the brain morphology of this very large rodent, aimed at providing information that is lacking in the literature. Here, the gross anatomy of the cerebrum and brainstem in nine adult African grasscutters is described. The cerebral cortex was smooth, devoid of gyri and sulci, thus, placing the rodent in the lissencephalic group of mammals. However, blood vessels on the cortex created arterial and venous impressions. The cortex was asymmetrically-tapered oval in shape. The rostral and caudal colliculi were exposed through the cerebral transverse fissure. The rostro-caudal extent of the corpus callosum was from the mid-point of the frontal and parietal lobes, to a point just rostral to the occipital lobe. The rostral colliculi were grossly smaller than the caudal colliculi. The occulomotor and trochlear nerves emerged from the ventral midbrain, rostral to the pons. The pons was exceptionally large; it was pre-trigeminal. On either side of the ventral median fissure of the medulla oblongata were conspicuous pyramids. The trapezoid bodies were also conspicuous. These, and other findings, will be useful in future phylogenetic comparison of rodent brain morphology.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Takumi T. Shito ◽  
Naohiro Hasegawa ◽  
Kotaro Oka ◽  
Kohji Hotta

AbstractThe transparency of animals is an important biological feature. Ascidian eggs have various degrees of transparency, but this characteristic has not yet been measured quantitatively and comprehensively. In this study, we established a method for evaluating the transparency of eggs to first characterize the transparency of ascidian eggs across different species and to infer a phylogenetic relationship among multiple taxa in the class Ascidiacea. We measured the transmittance of 199 eggs from 21 individuals using a hyperspectral camera. The spectrum of the visual range of wavelengths (400–760 nm) varied among individuals and we calculated each average transmittance of the visual range as bio-transparency. When combined with phylogenetic analysis based on the nuclear 18S rRNA and the mitochondrial cytochrome c oxidase subunit I gene sequences, the bio-transparencies of 13 species were derived from four different families: Ascidiidae, Cionidae, Pyuridae, and Styelidae. The bio-transparency varied 10–90% and likely evolved independently in each family. Ascidiella aspersa showed extremely high (88.0 ± 1.6%) bio-transparency in eggs that was maintained in the “invisible” larva. In addition, it was indicated that species of the Ascidiidae family may have a phylogenetic constraint of egg transparency.


2020 ◽  
Vol 103 (4) ◽  
pp. 1427-1434
Author(s):  
Kathryn J. Allan ◽  
Michael J. Maze ◽  
Renee L. Galloway ◽  
Matthew P. Rubach ◽  
Holly M. Biggs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document