Tissue- and Salinity-specific Na–Cl Cotransporter (NCC) Orthologues Involved in the Sea lamprey (Petromyzon Marinus) Adaptive Osmoregulation

Author(s):  
A. Barany ◽  
C. A. Shaughnessy ◽  
R. M. Pelis ◽  
J. Fuentes ◽  
J. M. Mancera ◽  
...  

Abstract Two ncc orthologues (termed ncca and nccb) were found in the sea lamprey genome, whereas nkcc2 was not. In a phylogenetic comparison among other vertebrate amino acids, NCC and NKCC deduced sequences, the sea lamprey NCC’s occupied basal positions within the NCC clade. In freshwater, ncca mRNA was found only in the gill and nccb only in the intestine, whereas both were found in the kidney. Acclimation to seawater increased nccb mRNA in the intestine and kidney. Intestinal nccb mRNA also increased during late metamorphosis. The electrophysiological approach in the Ussing chamber of intestinal tissue ex vivo showed significant differences between freshwater and seawater-acclimated juveniles. Luminal application of indapamide (NCC inhibitor) resulted in 73 and 30% inhibition of short-circuit current (Isc) in the proximal and distal intestine, respectively. The luminal application of bumetanide (NKCC inhibitor) did not affect intestinal Isc. Indapamide also inhibited ex vivo intestinal water absorption. Our results indicate that NCCb is likely the key passive ion cotransporter protein for ion uptake by the lamprey intestine to facilitate water absorption in seawater. As such, the preparatory increases in intestinal nccb mRNA expression during metamorphosis are likely critical to the development of whole animal salinity tolerance.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Barany ◽  
C. A. Shaughnessy ◽  
R. M. Pelis ◽  
J. Fuentes ◽  
J. M. Mancera ◽  
...  

AbstractTwo orthologues of the gene encoding the Na+-Cl− cotransporter (NCC), termed ncca and nccb, were found in the sea lamprey genome. No gene encoding the Na+-K+-2Cl− cotransporter 2 (nkcc2) was identified. In a phylogenetic comparison among other vertebrate NCC and NKCC sequences, the sea lamprey NCCs occupied basal positions within the NCC clades. In freshwater, ncca mRNA was found only in the gill and nccb only in the intestine, whereas both were found in the kidney. Intestinal nccb mRNA levels increased during late metamorphosis coincident with salinity tolerance. Acclimation to seawater increased nccb mRNA levels in the intestine and kidney. Electrophysiological analysis of intestinal tissue ex vivo showed this tissue was anion absorptive. After seawater acclimation, the proximal intestine became less anion absorptive, whereas the distal intestine remained unchanged. Luminal application of indapamide (an NCC inhibitor) resulted in 73% and 30% inhibition of short-circuit current (Isc) in the proximal and distal intestine, respectively. Luminal application of bumetanide (an NKCC inhibitor) did not affect intestinal Isc. Indapamide also inhibited intestinal water absorption. Our results indicate that NCCb is likely the key ion cotransport protein for ion uptake by the lamprey intestine that facilitates water absorption in seawater. As such, the preparatory increases in intestinal nccb mRNA levels during metamorphosis of sea lamprey are likely critical to development of whole animal salinity tolerance.


2020 ◽  
Vol 11 ◽  
Author(s):  
Iris A. L. Silva ◽  
Aires Duarte ◽  
Fernando A. L. Marson ◽  
Raquel Centeio ◽  
Tereza Doušová ◽  
...  

Most cases of Cystic Fibrosis (CF) are diagnosed early in life. However, people with atypical CF forms pose diagnosis dilemmas, requiring laboratory support for diagnosis confirmation/exclusion. Ex vivo analysis of fresh rectal biopsies by Ussing chamber has been the best discriminant biomarker for CF diagnosis/prognosis so far. Here we aimed to evaluate different electrophysiological parameters from Ussing chamber analysis of rectal biopsies from people with CF (PwCF) to establish the one with highest correlations with clinical features as the best CF diagnosis/prognosis biomarker. We analyzed measurements of CFTR-mediated Cl– secretion in rectal biopsies from 143 individuals (∼592 biopsies), the largest cohort so far analyzed by this approach. New parameters were analyzed and compared with the previous biomarker, i.e., the IBMX (I)/Forskolin (F)/Carbachol (C)-stimulated short-circuit current (I’sc–I/F/C). Correlations with clinical features showed that the best parameter corresponded to voltage measurements of the I/F + (I/F/CCH) response (VI/F+I/F/C), with higher correlations vs. I’sc–I/F/C for: sweat chloride (59 vs. 52%), fecal elastase (69 vs. 55%) and lung function, measured by FEV1 (27 vs. 20%). Altogether data show that VI/F+I/F/C is the most sensitive, reproducible, and robust predictive biomarker for CF diagnosis/prognosis effectively discriminating classical, atypical CF and non-CF groups.


2020 ◽  
Vol 318 (2) ◽  
pp. R410-R417 ◽  
Author(s):  
A. Barany ◽  
C. A. Shaughnessy ◽  
J. Fuentes ◽  
J. M. Mancera ◽  
S. D. McCormick

Lampreys are the most basal vertebrates with an osmoregulatory strategy. Previous research has established that the salinity tolerance of sea lamprey increases dramatically during metamorphosis, but underlying changes in the gut have not been examined. In the present work, we examined changes in intestinal function during metamorphosis and seawater exposure of sea lamprey ( Petromyzon marinus). Fully metamorphosed juvenile sea lamprey had 100% survival after direct exposure to 35 parts per thousand seawater (SW) and only slight elevations in plasma chloride (Cl−) levels. Drinking rates of sea lamprey juveniles in seawater were 26-fold higher than juveniles in freshwater (FW). Na+-K+-ATPase (NKA) activity in the anterior and posterior intestine increased 12- and 3-fold, respectively, during metamorphosis, whereas esophageal NKA activity was lower than in the intestine and did not change with development. Acclimation to SW significantly enhanced NKA activity in the posterior intestine but did not significantly change NKA activity in the anterior intestine, which remained higher than that in the posterior intestine. Intestinal Cl− and water uptake, which were observed in ex vivo preparations of anterior and posterior intestine under both symmetric and asymmetric conditions, were higher in juveniles than in larvae and were similar in magnitude of those of teleost fish. Inhibition of NKA by ouabain in ex vivo preparations inhibited intestinal water absorption by 64%. Our results indicate drinking and intestinal ion and water absorption are important to osmoregulation in SW and that preparatory increases in intestinal NKA activity are important to the development of salinity tolerance that occurs during sea lamprey metamorphosis.


2016 ◽  
Vol 311 (1) ◽  
pp. R179-R191 ◽  
Author(s):  
Ilan M. Ruhr ◽  
Yoshio Takei ◽  
Martin Grosell

Teleosts living in seawater continually absorb water across the intestine to compensate for branchial water loss to the environment. The present study reveals that the Gulf toadfish ( Opsanus beta) rectum plays a comparable role to the posterior intestine in ion and water absorption. However, the posterior intestine appears to rely more on SLC26a6 (a HCO3−/Cl− antiporter) and the rectum appears to rely on NKCC2 (SLC12a1) for the purposes of solute-coupled water absorption. The present study also demonstrates that the rectum responds to renoguanylin (RGN), a member of the guanylin family of peptides that alters the normal osmoregulatory processes of the distal intestine, by inhibited water absorption. RGN decreases rectal water absorption more greatly than in the posterior intestine and leads to net Na+ and Cl− secretion, and a reversal of the absorptive short-circuit current ( ISC). It is hypothesized that maintaining a larger fluid volume within the distal segments of intestinal tract facilitates the removal of CaCO3 precipitates and other solids from the intestine. Indeed, the expression of the components of the Cl−-secretory response, apical CFTR, and basolateral NKCC1 (SLC12a2), are upregulated in the rectum of the Gulf toadfish after 96 h in 60 ppt, an exposure that increases CaCO3 precipitate formation relative to 35 ppt. Moreover, the downstream intracellular effects of RGN appear to directly inhibit ion absorption by NKCC2 and anion exchange by SLC26a6. Overall, the present findings elucidate key electrophysiological differences between the posterior intestine and rectum of Gulf toadfish and the potent regulatory role renoguanylin plays in osmoregulation.


2018 ◽  
Vol 8 (1) ◽  
pp. 19-25
Author(s):  
Yamina Benaissa ◽  
Samia Addou ◽  
Wafaa Dib ◽  
Hadria Grar ◽  
Omar Kheroua ◽  
...  

In this work the effect of coconut milk on mice sensitized to cow's milk proteins was evaluated. Balb/c mice treated orally for twenty eight days with coconut milk were sensitized intraperitoneally with β-lactoglobulin (β-Lg) or α-Lactoglobulin (α-Lac). We used Ussing chamber to analyze ex vivo electrical parameters characterizing the intestinal tissue of mice by measuring the variations of the short current circuit Isc (μA/cm2) as well as the epithelial conductance (G). Jejunal fragments of sensitized and treated mice were mounted in Ussing chamber and stimulated by the deposit of β-Lg or α-Lac. Symptom scores were determined after in vivo challenge to β-Lg or α-Lac. Intestinal damage was assessed by histological analysis. Coconut milk influ-enced the electrophysiological parameters by significantly decreasing the short-circuit current (Isc) (p < 0.001) and the epithelial conductance ((p< 0.01 and (p < 0.001, respectively). Moreover, in coconut milk-treated mice, no significant clinical symptoms were observed. Analysis of histological sections revealed that coconut milk reduced the microscopic lesions induced by β-Lg or α-Lac sensitization. We speculate that the administration of coconut milk could prevent the systemic and anaphylactic responses in sensitized mice.


2006 ◽  
Vol 74 (5) ◽  
pp. 2937-2946 ◽  
Author(s):  
A. Ghosh ◽  
D. R. Saha ◽  
K. M. Hoque ◽  
M. Asakuna ◽  
S. Yamasaki ◽  
...  

ABSTRACT Cholera toxin gene-negative Vibrio cholerae non-O1, non-O139 strain PL-21 is the etiologic agent of cholera-like syndrome. Hemagglutinin protease (HAP) is one of the major secretory proteins of PL-21. The mature 45-kDa and processed 35-kDa forms of HAP were purified in the presence and absence of EDTA from culture supernatants of PL-21. Enterotoxigenicities of both forms of HAP were tested in rabbit ileal loop (RIL), Ussing chamber, and tissue culture assays. The 35-kDa HAP showed hemorrhagic fluid response in a dose-dependent manner in the RIL assay. Histopathological examination of 20 μg of purified protease-treated rabbit ileum showed the presence of erythrocytes and neutrophils in the upper part of the villous lamina propria. Treatment with 40 μg of protease resulted in gross damage of the villous epithelium with inflammation, hemorrhage, and necrosis. The 35-kDa form of HAP, when added to the lumenal surface of rat ileum loaded in an Ussing chamber, showed a decrease in the intestinal short-circuit current and a cell rounding effect on HeLa cells. The mature 45-kDa form of HAP showed an increase in intestinal short-circuit current in an Ussing chamber and a cell distending effect on HeLa cells. These results show that HAP may play a role in the pathogenesis of PL-21.


2010 ◽  
Vol 299 (1) ◽  
pp. R92-R100 ◽  
Author(s):  
Jens Berger ◽  
Martin Hardt ◽  
Wolfgang G. Clauss ◽  
Martin Fronius

A thin liquid layer covers the lungs of air-breathing vertebrates. Active ion transport processes via the pulmonary epithelial cells regulate the maintenance of this layer. This study focuses on basolateral Cl− uptake mechanisms in native lungs of Xenopus laevis and the involvement of the Na+/K+/2 Cl− cotransporter (NKCC) and HCO3−/Cl− anion exchanger (AE), in particular. Western blot analysis and immunofluorescence staining revealed the expression of the NKCC protein in the Xenopus lung. Ussing chamber experiments demonstrated that the NKCC inhibitors (bumetanide and furosemide) were ineffective at blocking the cotransporter under basal conditions, as well as under pharmacologically stimulated Cl−-secreting conditions (forskolin and chlorzoxazone application). However, functional evidence for the NKCC was detected by generating a transepithelial Cl− gradient. Further, we were interested in the involvement of the HCO3−/Cl− anion exchanger to transepithelial ion transport processes. Basolateral application of DIDS, an inhibitor of the AE, resulted in a significantly decreased the short-circuit current (ISC). The effect of DIDS was diminished by acetazolamide and reduced by increased external HCO3− concentrations. Cl− secretion induced by forskolin was decreased by DIDS, but this effect was abolished in the presence of HCO3−. These experiments indicate that the AE at least partially contributes to Cl− secretion. Taken together, our data show that in Xenopus lung epithelia, the AE, rather than the NKCC, is involved in basolateral Cl− uptake, which contrasts with the common model for Cl− secretion in pulmonary epithelia.


1994 ◽  
Vol 188 (1) ◽  
pp. 205-216 ◽  
Author(s):  
T Uesaka ◽  
K Yano ◽  
M Yamasaki ◽  
K Nagashima ◽  
M Ando

Four somatostatin-related peptides were isolated from eel guts. Two of them were the same as eel SS-25II (eSS-25II) and eel SS-25I (eSS-25I) isolated from European eel pancreas. The remaining two peptides were C-terminal tetradecapeptides (eSS-14II and eSS-14I) of eSS-25II and eSS-25I, respectively. These four peptides all enhanced the serosa-negative transepithelial potential difference and short-circuit current across the seawater eel intestine after pretreatment with isobutylmethylxanthine, serotonin (5-HT) and methacholine, an agonist of acetylcholine (ACh). Among these peptides, eSS-25II was the most potent enhancer, followed by eSS-25I and eSS-14II. Since the large peptide (eSS-25II) acts at a lower concentration than the small somatostatin (eSS-14II), the 11 N-terminal amino acid residues seem to potentiate somatostatin action in the eel intestine. In contrast, eSS-14II was more potent than mammalian SS-14, indicating that the three amino acid residues (Tyr18, Gly21, Pro22) in the C-terminal portion also contribute to the potency of somatostatin. Endogenous somatostatin (eSS-25II) activated net Na+, Cl- and water fluxes across the seawater eel intestine. This stimulatory action was not inhibited by tetrodotoxin or yohimbine, an adrenergic antagonist, indicating that eSS-25II does not act through neuronal firing or through catecholamine release. Thus, eel somatostatins may act directly on the enterocytes, but on a distinct receptor from that for adrenaline, to antagonize the inhibition of NaCl and water absorption by 5-HT and ACh in the seawater eel intestine.


Toxins ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 351 ◽  
Author(s):  
C. Tse ◽  
Julie In ◽  
Jianyi Yin ◽  
Mark Donowitz ◽  
Michele Doucet ◽  
...  

One of the characteristic manifestations of Shiga-toxin-producing Escherichia coli (E. coli) infection in humans, including EHEC and Enteroaggregative E. coli O104:H4, is watery diarrhea. However, neither Shiga toxin nor numerous components of the type-3 secretion system have been found to independently elicit fluid secretion. We used the adult stem-cell-derived human colonoid monolayers (HCM) to test whether EHEC-secreted extracellular serine protease P (EspP), a member of the serine protease family broadly expressed by diarrheagenic E. coli can act as an enterotoxin. We applied the Ussing chamber/voltage clamp technique to determine whether EspP stimulates electrogenic ion transport indicated by a change in short-circuit current (Isc). EspP stimulates Isc in HCM. The EspP-stimulated Isc does not require protease activity, is not cystic fibrosis transmembrane conductance regulator (CFTR)-mediated, but is partially Ca2+-dependent. EspP neutralization with a specific antibody reduces its potency in stimulating Isc. Serine Protease A, secreted by Enteroaggregative E. coli, also stimulates Isc in HCM, but this current is CFTR-dependent. In conclusion, EspP stimulates colonic CFTR-independent active ion transport and may be involved in the pathophysiology of EHEC diarrhea. Serine protease toxins from E. coli pathogens appear to serve as enterotoxins, potentially significantly contributing to watery diarrhea.


1997 ◽  
Vol 273 (5) ◽  
pp. G1127-G1134 ◽  
Author(s):  
W. MacNaughton ◽  
B. Moore ◽  
S. Vanner

This study characterized tachykinin-evoked secretomotor responses in in vitro submucosal and mucosal-submucosal preparations of the guinea pig ileum using combined intracellular and Ussing chamber recording techniques. Superfusion of endogenous tachykinins substance P (SP), neurokinin A (NKA), and neurokinin B depolarized single submucosal neurons and evoked increased short-circuit current ( I sc) responses in Ussing chamber preparations. The NK1-receptor agonist [Sar9,Met(O2)11]SP [50% effective concentration (EC50) = 2 nM] depolarized all submucosal neurons examined. The NK3-receptor agonist senktide (EC50 = 20 nM) depolarized ∼50% of neurons examined, whereas the NK2-receptor agonist [Ala5,β-Ala8]NKA-(4—10) had no effect on membrane potential. [Sar9,Met(O2)11]SP and senktide evoked similar increases in I sc that were tetrodotoxin sensitive (91 and 100%, respectively) and were selectively blocked by the NK1antagonist CP-99,994 and the NK3antagonist SR-142801, respectively. Capsaicin-evoked increases in I sc were significantly inhibited (54%, P < 0.05) by CP-99,994 but not by SR-142801. Neither antagonist inhibited slow excitatory postsynaptic potentials. These findings suggest that tachykinin-evoked secretion in guinea pig ileum is mediated by NK1 and NK3 receptors on submucosal secretomotor neurons and that capsaicin-sensitive nerves release tachykinin(s) that activate the NK1 receptors.


Sign in / Sign up

Export Citation Format

Share Document