scholarly journals Ground Observations and Environmental Covariates Integration for Mapping of Soil Salinity: A Machine Learning-Based Approach

2021 ◽  
Vol 13 (23) ◽  
pp. 4825
Author(s):  
Salman Naimi ◽  
Shamsollah Ayoubi ◽  
Mojtaba Zeraatpisheh ◽  
Jose Alexandre Melo Dematte

Soil salinization is a severe danger to agricultural activity in arid and semi-arid areas, reducing crop production and contributing to land destruction. This investigation aimed to utilize machine learning algorithms to predict spatial soil salinity (dS m−1) by combining environmental covariates derived from remotely sensed (RS) data, a digital elevation model (DEM), and proximal sensing (PS). The study is located in an arid region, southern Iran (52°51′–53°02′E; 28°16′–28°29′N), in which we collected 300 surface soil samples and acquired the spectral data with RS (Sentinel-2) and PS (electromagnetic induction instrument (EMI) and portable X-ray fluorescence (pXRF)). Afterward, we analyzed the data using five machine learning methods as follows: random forest—RF, k-nearest neighbors—kNN, support vector machines—SVM, partial least squares regression—PLSR, artificial neural networks—ANN, and the ensemble of individual models. To estimate the electrical conductivity of the saturated paste extract (ECe), we built three scenarios, including Scenario (1): Synthetic Soil Image (SySI) bands and salinity indices derived from it; Scenario (2): RS data, PS data, topographic attributes, and geology and geomorphology maps; and Scenario (3): the combination of Scenarios (1) and (2). The best prediction accuracy was obtained for the RF model in Scenario (3) (R2 = 0.48 and RMSE = 2.49), followed by Scenario (2) (RF model, R2 = 0.47 and RMSE = 2.50) and Scenario (1) for the SVM model (R2 = 0.26 and RMSE = 2.97). According to ensemble modeling, a combined strategy with the five models exceeded the performance of all the single ones and predicted soil salinity in all scenarios. The results revealed that the ensemble modeling method had higher reliability and more accurate predictive soil salinity than the individual approach. Relative improvement (RI%) showed that the R2 index in the ensemble model improved compared to the most precise prediction for the Scenarios (1), (2), and (3) with 120.95%, 56.82%, and 66.71%, respectively. We applied the best model in each scenario for mapping the soil salinity in the selected area, which indicated that ECe tended to increase from the northwestern to south and southeastern regions. The area with high ECe was located in the regions that mainly had low elevations and playa. The areas with low ECe were located in the higher elevations with steeper slopes and alluvial fans, and thus, relief had great importance. This study provides a precise, cost-effective, and scientific base prediction for decision-making purposes to map soil salinity in arid regions.

2020 ◽  
Vol 187 ◽  
pp. 04001
Author(s):  
Ravipat Lapcharoensuk ◽  
Kitticheat Danupattanin ◽  
Chaowarin Kanjanapornprapa ◽  
Tawin Inkawee

This research aimed to study the combination of NIR spectroscopy and machine learning for monitoring chilli sauce adulterated with papaya smoothie. The chilli sauce was produced by the famous community enterprise of chilli sauce processing in Thailand. The ingredients of the chilli sauce consisted of 45% chilli, 25% sugar, 20% garlic, 5% vinegar, and 5% salt. The chilli sauce sample was mixed with ripened papaya (Khaek Dam variety) smoothie with 9 levels from 10 to 90 %w/w. The NIR spectra of pure chilli sauce, papaya smoothie and 9 adulterated chilli sauce samples were recorded using FT-NIR spectrometer in the wavenumber range of 12500 and 4000 cm-1. Three machine learning algorithms were applied to develop a model for monitoring adulterated chilli sauce, including partial least squares regression (PLS), support vector machine (SVM), and backpropagation neural network (BPNN). All model presented performance of prediction in the validation set with R2al = 0.99 while RMSEP of PLS, SVM and BPNN were 1.71, 2.18 and 3.27% w/w respectively. This finding indicated that NIR spectroscopy coupled with machine learning approaches were shown to be an alternative technique to monitor papaya smoothie adulterated in chilli sauce in the global food industry.


2019 ◽  
Vol 11 (22) ◽  
pp. 2605 ◽  
Author(s):  
Wang ◽  
Chen ◽  
Wang ◽  
Li

Salt-affected soil is a prominent ecological and environmental problem in dry farming areas throughout the world. China has nearly 9.9 million km2 of salt-affected land. The identification, monitoring, and utilization of soil salinization have become important research topics for promoting sustainable progress. In this paper, using field-measured spectral data and soil salinity parameter data, through analysis and transformation of spectral data, five machine learning models, namely, random forest regression (RFR), support vector regression (SVR), gradient-boosted regression tree (GBRT), multilayer perceptron regression (MLPR), and least angle regression (Lars) are compared. The following performance measures of each model were evaluated: the collinear problems, handling data noise, stability, and the accuracy. In terms of these four aspects, the performance of each model on estimating soil salinity is evaluated. The results demonstrate that among the five models, RFR has the best performance in dealing with collinearity, RFR and MLPR have the best performance in dealing with data noise, and the SVR model is the most stable. The Lars model has the highest accuracy, with a determination coefficient (R2) of 0.87, ratio of performance to deviation (RPD) of 2.67, root mean square error (RMSE) of 0.18, and mean absolute percentage error (MAPE) of 0.11. Then, the comprehensive comparison and analysis of the five models are carried out, and it is found that the comprehensive performance of RFR model is the best; hence, this method is most suitable for estimating soil salinity using hyperspectral data. This study can provide a reference for the selection of regression methods in subsequent studies on estimating soil salinity using hyperspectral data.


2021 ◽  
Vol 13 (17) ◽  
pp. 3459
Author(s):  
Joanna Pranga ◽  
Irene Borra-Serrano ◽  
Jonas Aper ◽  
Tom De Swaef ◽  
An Ghesquiere ◽  
...  

High-throughput field phenotyping using close remote sensing platforms and sensors for non-destructive assessment of plant traits can support the objective evaluation of yield predictions of large breeding trials. The main objective of this study was to examine the potential of unmanned aerial vehicle (UAV)-based structural and spectral features and their combination in herbage yield predictions across diploid and tetraploid varieties and breeding populations of perennial ryegrass (Lolium perenne L.). Canopy structural (i.e., canopy height) and spectral (i.e., vegetation indices) information were derived from data gathered with two sensors: a consumer-grade RGB and a 10-band multispectral (MS) camera system, which were compared in the analysis. A total of 468 field plots comprising 115 diploid and 112 tetraploid varieties and populations were considered in this study. A modelling framework established to predict dry matter yield (DMY), was used to test three machine learning algorithms, including Partial Least Squares Regression (PLSR), Random Forest (RF), and Support Vector Machines (SVM). The results of the nested cross-validation revealed: (a) the fusion of structural and spectral features achieved better DMY estimates as compared to models fitted with structural or spectral data only, irrespective of the sensor, ploidy level or machine learning algorithm applied; (b) models built with MS-based predictor variables, despite their lower spatial resolution, slightly outperformed the RGB-based models, as lower mean relative root mean square error (rRMSE) values were delivered; and (c) on average, the RF technique reported the best model performances among tested algorithms, regardless of the dataset used. The approach introduced in this study can provide accurate yield estimates (up to an RMSE = 308 kg ha−1) and useful information for breeders and practical farm-scale applications.


2019 ◽  
Vol 11 (3) ◽  
pp. 242 ◽  
Author(s):  
Yeqiang Wen ◽  
Songhao Shang ◽  
Khalil Rahman

The accurate mapping of crops can provide effective information for regional agricultural management, which is helpful to improve crop production efficiency. Recently, remote sensing data offers a comprehensive approach to achieve crop identification on a regional scale. However, the classification methods for multi-year mapping needs further study in regions with a complex planting structure, due to the mixed pixels at a spatial distribution and the high error in different years at a temporal scale. The objective of this study is to map the multi-year spatial distribution of three main crops (maize, sunflower, and wheat) in the Hetao irrigation district of China for the period 2012–2016 based on a pre-constrained classification method. The pre-constrained method integrates a parameterized phenology-based vegetation indexes classifier and two non-parametric machine learning algorithms—support vector machine (SVM) and random forest (RF). Results indicated that the performance of the pre-constrained classification method was excellent in the multi-year mapping of major crops in the study area, with absolute relative errors mainly less than 14% in the whole irrigation district and less than 20% in the five counties. The corresponding overall accuracy was 87.9%, and the Kappa coefficient was 0.80. Mapping results showed that maize is mainly distributed in Hangjinhouqi, southern Linhe, northern Wuyuan, and eastern Wulateqianqi, while wheat is relatively less and scatteredly distributed in Hangjinhouqi and Wuyuan. Moreover, the sunflower planting area increased significantly and expanded spatially from Wuyuan and western Wulateqianqi to northern Hangjinhouqi and Linhe from 2012 to 2016. In addition, the phenology-based vegetation indexes classifier was found to be effective in improving the classification accuracy based on the contribution analysis.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Amitabha Chakrabarty ◽  
Nafees Mansoor ◽  
Muhammad Irfan Uddin ◽  
Mosleh Hmoud Al-adaileh ◽  
Nizar Alsharif ◽  
...  

Crop cultivation is one of the oldest activities of civilization. For a long time, crop production was carried out based on knowledge passed from generation to generation. However, due to the rapid growth in the human population of the world, human knowledge-based cultivation is not enough to meet the demanding need. To address this issue, the usage of machine learning-based tools has been studied in this paper. An experiment has been carried out over 0.3 million data. This dataset identifies 46 prominent parameters for cultivation, which is collected from the Department of Agriculture Extension, Bangladesh. Comparison between neural networks and numbers of machine learning algorithms has been carried out in this research. It is observed that the neural network outperforms the other methods by maintaining an average prediction accuracy of 96.06% for six different crops. Other contemporary machine learning algorithms, namely, support vector machine, random forest, and logistic regression, have average prediction accuracy of around 68.9%, 91.2%, and 62.39%, respectively.


Agriculture plays a significant role in the growth of the national economy. It relay on weather and other environmental aspects. Some of the factors on which agriculture is dependent are Soil, climate, flooding, fertilizers, temperature, precipitation, crops, insecticides and herb. The crop yield is dependent on these factors and hence difficult to predict. To know the status of crop production, in this work we perform descriptive study on agricultural data using various machine learning techniques. Crop yield estimates include estimating crop yields from available historical data such as precipitation data, soil data, and historic crop yields. This prediction will help farmers to predict crop yield before farming. Here we are utilizing three datasets like as clay dataset, precipitation dataset, and production dataset of Karnataka state, then we structure an assembled data sets and on this dataset we employ three different algorithms to get the genuine assessed yield and the precision of three different methods. K-Nearest Neighbor(KNN), Support Vector Machine(SVM), and Decision tree algorithms are applied on the training dataset and are tested with the test dataset, and the implementation of these algorithms is done using python programming and spyder tool. The performance comparison of algorithms is shown using mean absolute error, cross validation and accuracy and it is found that Decision tree is giving accuracy of 99% with very less mean square error(MSE). The proposed model can exhibit the precise expense of assessed crop yield and it is mark like as LOW, MID, and HIGH.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9087
Author(s):  
Guangfei Wei ◽  
Yu Li ◽  
Zhitao Zhang ◽  
Yinwen Chen ◽  
Junying Chen ◽  
...  

Soil salinization is a global problem closely related to the sustainable development of social economy. Compared with frequently-used satellite-borne sensors, unmanned aerial vehicles (UAVs) equipped with multispectral sensors provide an opportunity to monitor soil salinization with on-demand high spatial and temporal resolution. This study aims to quantitatively estimate soil salt content (SSC) using UAV-borne multispectral imagery, and explore the deep mining of multispectral data. For this purpose, a total of 60 soil samples (0–20 cm) were collected from Shahaoqu Irrigation Area in Inner Mongolia, China. Meanwhile, from the UAV sensor we obtained the multispectral data, based on which 22 spectral covariates (6 spectral bands and 16 spectral indices) were constructed. The sensitive spectral covariates were selected by means of gray relational analysis (GRA), successive projections algorithm (SPA) and variable importance in projection (VIP), and from these selected covariates estimation models were built using back propagation neural network (BPNN) regression, support vector regression (SVR) and random forest (RF) regression, respectively. The performance of the models was assessed by coefficient of determination (R2), root mean squared error (RMSE) and ratio of performance to deviation (RPD). The results showed that the estimation accuracy of the models had been improved markedly using three variable selection methods, and VIP outperformed GRA and GRA outperformed SPA. However, the model accuracy with the three machine learning algorithms turned out to be significantly different: RF > SVR > BPNN. All the 12 SSC estimation models could be used to quantitatively estimate SSC (RPD > 1.4) while the VIP-RF model achieved the highest accuracy (Rc2 = 0.835, RP2 = 0.812, RPD = 2.299). The result of this study proved that UAV-borne multispectral sensor is a feasible instrument for SSC estimation, and provided a reference for further similar research.


2021 ◽  
Vol 13 (2) ◽  
pp. 305
Author(s):  
Jiaqiang Wang ◽  
Jie Peng ◽  
Hongyi Li ◽  
Caiyun Yin ◽  
Weiyang Liu ◽  
...  

Accurate monitoring of soil salinization plays a key role in the ecological security and sustainable agricultural development of arid regions. As a branch of artificial intelligence, machine learning acquires new knowledge through self-learning and continuously improves its own performance. The purpose of this study is to combine Sentinel-2 Multispectral Imager (MSI) data and MSI-derived covariates with measured soil salinity data and to apply three machine learning algorithms in modeling to estimate and map the soil salinity in the study sample area. According to the convenient transportation conditions, the study area and sampling quadrat were set up, and the 5-point method was used to collect the soil mixed samples, and 160 soil mixed samples were collected. Kennard–Stone (K–S) algorithm was used for sample classification, 70% for modeling and 30% for verification. The machine learning algorithm uses Support Vector Machines (SVM), Artificial Neural Network (ANN), and Random Forest (RF). The results showed that (1) the average reflectance of each band of the MSI data ranged from 0.21–0.28. According to the spectral characteristics corresponding to different soil electrical conductivity (EC) levels (1.07–79.6 dS m−1), the spectral reflectance of salinized soil in the MSI data ranged from 0.09–0.35. (2) The correlation coefficient between the MSI data and MSI-derived covariates and soil EC was moderate, and the correlation between certain MSI data sets and soil EC was not significant. (3) The SVM soil EC estimation model established with the MSI data set attained a higher performance and accuracy (R2 = 0.88, root mean square error (RMSE) = 4.89 dS m−1, and ratio of the performance to the interquartile range (RPIQ) = 1.96, standard error of the laboratory measurements to the standard error of the predictions (SEL/SEP) = 1.11) than those attained with the soil EC estimation models established with the RF and ANN models. (4) We applied the SVM soil EC estimation model to map the soil salinity in the study area, which showed that the farmland with higher altitudes discharged a large amount of salt to the surroundings due to long-term irrigation, and the secondary salinization of the farmland also caused a large amount of salt accumulation. This research provides a scientific basis for the simulation of soil salinization scenarios in arid areas in the future.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


Sign in / Sign up

Export Citation Format

Share Document