mineralogical investigation
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 19)

H-INDEX

16
(FIVE YEARS 1)

Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 540
Author(s):  
Alexey Vladimirovich Kargin ◽  
Anna Andreevna Nosova ◽  
Ludmila Vyacheslavovna Sazonova ◽  
Vladimir Vasilievich Tretyachenko ◽  
Yulia Olegovna Larionova ◽  
...  

To provide new insights into the evolution of kimberlitic magmas, we have undertaken a detailed petrographic and mineralogical investigation of highly evolved carbonate–phlogopite-bearing kimberlites of the Kepino cluster, Arkhangelsk kimberlite province, Russia. The Kepino kimberlites are represented by volcanoclastic breccias and massive macrocrystic units within pipes as well as coherent porphyritic kimberlites within sills. The volcanoclastic units from pipes are similar in petrography and mineral composition to archetypal (Group 1) kimberlite, whereas the sills represent evolved kimberlites that exhibit a wide variation in amounts of carbonate and phlogopite. The late-stage evolution of kimberlitic melts involves increasing oxygen fugacity and fluid-phase evolution (forming carbonate segregations by exsolution, etc.). These processes are accompanied by the transformation of primary Al- and Ti-bearing phlogopite toward tetraferriphlogopite and the transition of spinel compositions from magmatic chromite to magnesian ulvöspinel and titanomagnetite. Similar primary kimberlitic melts emplaced as sills and pipes may be transitional to carbonatite melts in the shallow crust. The kimberlitic pipes are characterised by low carbonate amounts that may reflect the fluid degassing process during an explosive emplacement of the pipes. The Kepino kimberlite age, determined as 397.3 ± 1.2 Ma, indicates two episodes of ultramafic alkaline magmatism in the Arkhangelsk province, the first producing non-economic evolved kimberlites of the Kepino cluster and the second producing economic-grade diamondiferous kimberlites.


Author(s):  
Pande Nishant Prasad ◽  
Iris McElroy ◽  
Andreas Lennartsson ◽  
Caisa Samuelsson

AbstractFour different Cu-rich polymetallic concentrates are tested for volatilization of Sb and As during laboratory-scale roasting. The experiments are performed between 200 °C and 700 °C, at intervals of 100 °C and in an inert atmosphere. Sb volatilization is much less (maximum approximately 45 pct) than As volatilization (maximum approximately 95 pct) in these conditions at 700 °C. As volatilization is however limited from the concentrate having As mainly in a tetrahedrite solid solution ((Cu,Ag,Fe,Zn)12(Sb,As)4S13). Sb and As retained in the roasted calcine are found in the low-melting liquid phase, formed at approximately 500 °C. This melt phase gets enlarged and enriched in Sb with an increase in temperature. However, there is noticeable As volatilization from this melt phase with the temperature approaching 700 °C. Furthermore, there is an early and relatively high Sb volatilization from the concentrate having Sb substantially as gudmundite. Micron-scale elemental redistribution in gudmundite in the 350 °C roasted calcine confirms its transformation at this temperature. Other Sb minerals did not undergo any detectable transformation at this temperature, suggesting that the significant Sb volatilization starting between 300 °C and 400 °C was primarily from gudmundite. This benign attribute of gudmundite featured in this work in the context of roasting should also be relevant from the geometallurgical perspective during concentrate production, where concentrates bearing Sb are considered substandard for further Cu extraction irrespective of the Sb mineralogy.


2021 ◽  
Author(s):  
Encarnación Ruiz-Agudo ◽  
Lucian Staicu ◽  
Mihály Pósfai ◽  
Paulina Wojtowicz ◽  
Diego Baragaño Coto ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
pp. 342-353
Author(s):  
Piotr Kenis ◽  
Jacek Skurzyński ◽  
Zdzisław Jary ◽  
Rafał Kubik

AbstractThis article presents in detail the methodology dedicated strictly to loess mineralogical investigation by automated mineralogy system QEMSCAN® (quantitative evaluation of minerals by scanning electron microscopy (SEM)), which couples SEM and energy dispersive X-ray spectrometry to automatically deliver mineral and phase mapping. The present study provides guidelines for further loess investigation in Poland, in order to maintain the complete comparability of results which will be obtained. The methodology is then used to obtain the data on complex mineralogical composition (heavy, light, transparent and opaque phases). In total 1,159,107 particles have been measured for five bulk loess samples and 4–6% of them were heavy minerals (c.a. 10,000 per sample). The bulk samples are dominated by quartz (57.3–62.9%) and contain plagioclase (7.8–9.2%), K-feldspar (7.9–8.7%), carbonates (5.0–7.8%), muscovite (3.2–6.2%), biotite (4.2–7.5%), heavy minerals (4.3–5.8%) and clay minerals (0.9–1.6%). The heavy minerals (as a group recalculated to 100%) are mainly represented by phases such as clinopyroxene (38–51%), garnets (14–21%), TiO2 polymorphs (8–12%), Al2SiO5 polymorphs (3–7%), ilmenite (3–6%), iron oxides, e.g., hematite and magnetite (2–5%) and zircon (∼2%). Nearly 50% of the heavy minerals is classified in the 16–31 µm fraction, which determine the changes in the current research procedure traditionally used for Polish loess.


2020 ◽  
Vol 51 (4) ◽  
pp. 1446-1459 ◽  
Author(s):  
Pande Nishant Prasad ◽  
Andreas Lennartsson ◽  
Caisa Samuelsson

AbstractFour different Cu-rich polymetallic concentrates (additionally comprising Zn, Pb and impurity elements As, Sb) from various deposits in Sweden are examined, in particular for the sintering tendency during roasting in inert atmosphere. Experiments performed in a laboratory-scale roasting setup between 200 °C and 700 °C in intervals of 100 °C revealed that significant sintering initiates from 500 °C for all four concentrates. Two sintering mechanisms are determined from the examination of the sintered calcines: (1) solid-state assimilation of Cu-, Zn- and Fe-bearing main sulphide minerals to form a high-temperature solid solution, the iss phase belonging to the Cu-Fe-Zn-S system; (2) low-melting liquid phase formation due to partial melting of galena facilitated by the presence of impurity-bearing minerals, mainly the arsenopyrite and Sb sulphosalts such as tetrahedrite. Galena also forms a melt below 700 °C with the iss phase. Therefore, the presence of galena in polymetallic concentrates generally increases the susceptibility to early sintering. These experiments in inert atmosphere facilitate a fundamental study with practical relevance to the roasting in low oxidation potential environments, favourable for volatilization of impurity elements such as As and Sb.


Sign in / Sign up

Export Citation Format

Share Document