reproductive cost
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 3)

H-INDEX

17
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Abhishek Mishra ◽  
Sudipta Tung ◽  
V R Shree Sruti ◽  
P M Shreenidhi ◽  
Sutirth Dey

Environmental stress is one of the important causes of biological dispersal. At the same time, the process of dispersal itself can incur and/or increase susceptibility to stress for the dispersing individuals. Therefore, in principle, stress can serve as both a cause and a cost of dispersal. Desiccation stress is an environmentally relevant stress faced by many organisms, known to shape their population dynamics and distribution. However, the potentially contrasting roles of desiccation stress as a cause and a cost of dispersal have not been investigated. Furthermore, while desiccation stress often affects organisms in a sex-biased manner, it is not known whether the desiccation-dispersal relationship varies between males and females. We studied the role of desiccation stress as a cause and cost of dispersal in a series of experiments using D. melanogaster adults in two-patch dispersal setups. We were interested in knowing whether (a) dispersers are the individuals that are more susceptible to desiccation stress, (b) dispersers pay a cost in terms of reduced resistance to desiccation stress, (c) dispersal evolution alters the desiccation cost of dispersal, and (d) females pay a reproductive cost of dispersal. For this, we modulated the degree of desiccation stress faced by the flies as well as the provision of rest following a dispersal event. Our data showed that desiccation stress served as a significant cause of dispersal in both sexes. Further investigation revealed an increase in both male and female dispersal propensity with increasing desiccation duration. Next, we found a male-biased cost of dispersal in terms of reduced desiccation resistance. This trend was preserved in dispersal-selected and non-selected controls as well, where the desiccation cost of dispersal in females was very low compared to the males. Finally, we found that the females instead paid a significant reproductive cost of dispersal. Our results highlight the complex relationship between desiccation stress and dispersal, whereby desiccation resistance can show both a positive and a negative association with dispersal. Furthermore, the sex differences observed in these trait associations may translate into differences in movement patterns, thereby giving rise to sex-biased dispersal.


Genome ◽  
2019 ◽  
Vol 62 (11) ◽  
pp. 761-768
Author(s):  
Donal A. Hickey ◽  
G. Brian Golding

The cumulative reproductive cost of multi-locus selection has been considered to be a potentially limiting factor on the rate of adaptive evolution. In this paper, we show that Haldane’s arguments for the accumulation of reproductive costs over multiple loci are valid only for a clonally reproducing population of asexual genotypes. We show that a sexually reproducing population avoids this accumulation of costs. Thus, sex removes a perceived reproductive constraint on the rate of adaptive evolution. The significance of our results is twofold. First, the results demonstrate that adaptation based on multiple genes—such as selection acting on the standing genetic variation—does not entail a huge reproductive cost as suggested by Haldane, provided of course that the population is reproducing sexually. Second, this reduction in the cost of natural selection provides a simple biological explanation for the advantage of sex. Specifically, Haldane’s calculations illustrate the evolutionary disadvantage of asexuality; sexual reproduction frees the population from this disadvantage.


2019 ◽  
Author(s):  
Donal A. Hickey ◽  
G. Brian Golding

AbstractThe cumulative reproductive cost of multi-locus selection has been seen as a potentially limiting factor on the rate of adaptive evolution. In this paper, we show that Haldane’s arguments for the accumulation of reproductive costs over multiple loci are valid only for a clonally reproducing population of asexual genotypes. We show that a sexually reproducing population avoids this accumulation of costs. Thus, sex removes a perceived reproductive constraint on the rate of adaptive evolution. The significance of our results is twofold. First, the results demonstrate that adaptation based on multiple genes – such as selection acting on the standing genetic variation - does not entail a huge reproductive cost as suggested by Haldane, provided of course that the population is reproducing sexually. Secondly, this reduction in the cost of natural selection provides a simple biological explanation for the advantage of sex. Specifically, Haldane’s calculations illustrate the evolutionary disadvantage of asexuality; sexual reproduction frees the population from this disadvantage.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Nick Vallespir Lowery ◽  
Luke McNally ◽  
William C. Ratcliff ◽  
Sam P. Brown

ABSTRACT Bacterial cells, like many other organisms, face a tradeoff between longevity and fecundity. Planktonic cells are fast growing and fragile, while biofilm cells are often slower growing but stress resistant. Here we ask why bacterial lineages invest simultaneously in both fast- and slow-growing types. We develop a population dynamic model of lineage expansion across a patchy environment and find that mixed investment is favored across a broad range of environmental conditions, even when transmission is entirely via biofilm cells. This mixed strategy is favored because of a division of labor where exponentially dividing planktonic cells can act as an engine for the production of future biofilm cells, which grow more slowly. We use experimental evolution to test our predictions and show that phenotypic heterogeneity is persistent even under selection for purely planktonic or purely biofilm transmission. Furthermore, simulations suggest that maintenance of a biofilm subpopulation serves as a cost-effective hedge against environmental uncertainty, which is also consistent with our experimental findings. IMPORTANCE Cell types specialized for survival have been observed and described within clonal bacterial populations for decades, but why are these specialists continually produced under benign conditions when such investment comes at a high reproductive cost? Conversely, when survival becomes an imperative, does it ever benefit the population to maintain a pool of rapidly growing but vulnerable planktonic cells? Using a combination of mathematical modeling, simulations, and experiments, we find that mixed investment strategies are favored over a broad range of environmental conditions and rely on a division of labor between cell types, where reproductive specialists amplify survival specialists, which can be transmitted through the environment with a limited mortality rate. We also show that survival specialists benefit rapidly growing populations by serving as a hedge against unpredictable changes in the environment. These results help to clarify the general evolutionary and ecological forces that can generate and maintain diverse subtypes within clonal bacterial populations. Cell types specialized for survival have been observed and described within clonal bacterial populations for decades, but why are these specialists continually produced under benign conditions when such investment comes at a high reproductive cost? Conversely, when survival becomes an imperative, does it ever benefit the population to maintain a pool of rapidly growing but vulnerable planktonic cells? Using a combination of mathematical modeling, simulations, and experiments, we find that mixed investment strategies are favored over a broad range of environmental conditions and rely on a division of labor between cell types, where reproductive specialists amplify survival specialists, which can be transmitted through the environment with a limited mortality rate. We also show that survival specialists benefit rapidly growing populations by serving as a hedge against unpredictable changes in the environment. These results help to clarify the general evolutionary and ecological forces that can generate and maintain diverse subtypes within clonal bacterial populations.


2016 ◽  
Vol 109 (6) ◽  
pp. 2534-2542 ◽  
Author(s):  
W. N. Zhang ◽  
L. Ma ◽  
B. J. Wang ◽  
L. Chen ◽  
M. M. Khaing ◽  
...  

Evolution ◽  
2016 ◽  
Vol 70 (2) ◽  
pp. 296-313 ◽  
Author(s):  
Emeline Mourocq ◽  
Pierre Bize ◽  
Sandra Bouwhuis ◽  
Russell Bradley ◽  
Anne Charmantier ◽  
...  

2015 ◽  
Vol 112 (36) ◽  
pp. E5029-E5037 ◽  
Author(s):  
Susanne DiSalvo ◽  
Tamara S. Haselkorn ◽  
Usman Bashir ◽  
Daniela Jimenez ◽  
Debra A. Brock ◽  
...  

Symbiotic associations can allow an organism to acquire novel traits by accessing the genetic repertoire of its partner. In the Dictyostelium discoideum farming symbiosis, certain amoebas (termed “farmers”) stably associate with bacterial partners. Farmers can suffer a reproductive cost but also gain beneficial capabilities, such as carriage of bacterial food (proto-farming) and defense against competitors. Farming status previously has been attributed to amoeba genotype, but the role of bacterial partners in its induction has not been examined. Here, we explore the role of bacterial associates in the initiation, maintenance, and phenotypic effects of the farming symbiosis. We demonstrate that two clades of farmer-associated Burkholderia isolates colonize D. discoideum nonfarmers and infectiously endow them with farmer-like characteristics, indicating that Burkholderia symbionts are a major driver of the farming phenomenon. Under food-rich conditions, Burkholderia-colonized amoebas produce fewer spores than uncolonized counterparts, with the severity of this reduction being dependent on the Burkholderia colonizer. However, the induction of food carriage by Burkholderia colonization may be considered a conditionally adaptive trait because it can confer an advantage to the amoeba host when grown in food-limiting conditions. We observed Burkholderia inside and outside colonized D. discoideum spores after fruiting body formation; this observation, together with the ability of Burkholderia to colonize new amoebas, suggests a mixed mode of symbiont transmission. These results change our understanding of the D. discoideum farming symbiosis by establishing that the bacterial partner, Burkholderia, is an important causative agent of the farming phenomenon.


2015 ◽  
Vol 96 (1) ◽  
pp. 144-150 ◽  
Author(s):  
Mary Beth Manjerovic ◽  
Jane M. Waterman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document