scholarly journals Sex Solves Haldane’s Dilemma

2019 ◽  
Author(s):  
Donal A. Hickey ◽  
G. Brian Golding

AbstractThe cumulative reproductive cost of multi-locus selection has been seen as a potentially limiting factor on the rate of adaptive evolution. In this paper, we show that Haldane’s arguments for the accumulation of reproductive costs over multiple loci are valid only for a clonally reproducing population of asexual genotypes. We show that a sexually reproducing population avoids this accumulation of costs. Thus, sex removes a perceived reproductive constraint on the rate of adaptive evolution. The significance of our results is twofold. First, the results demonstrate that adaptation based on multiple genes – such as selection acting on the standing genetic variation - does not entail a huge reproductive cost as suggested by Haldane, provided of course that the population is reproducing sexually. Secondly, this reduction in the cost of natural selection provides a simple biological explanation for the advantage of sex. Specifically, Haldane’s calculations illustrate the evolutionary disadvantage of asexuality; sexual reproduction frees the population from this disadvantage.

Genome ◽  
2019 ◽  
Vol 62 (11) ◽  
pp. 761-768
Author(s):  
Donal A. Hickey ◽  
G. Brian Golding

The cumulative reproductive cost of multi-locus selection has been considered to be a potentially limiting factor on the rate of adaptive evolution. In this paper, we show that Haldane’s arguments for the accumulation of reproductive costs over multiple loci are valid only for a clonally reproducing population of asexual genotypes. We show that a sexually reproducing population avoids this accumulation of costs. Thus, sex removes a perceived reproductive constraint on the rate of adaptive evolution. The significance of our results is twofold. First, the results demonstrate that adaptation based on multiple genes—such as selection acting on the standing genetic variation—does not entail a huge reproductive cost as suggested by Haldane, provided of course that the population is reproducing sexually. Second, this reduction in the cost of natural selection provides a simple biological explanation for the advantage of sex. Specifically, Haldane’s calculations illustrate the evolutionary disadvantage of asexuality; sexual reproduction frees the population from this disadvantage.


2015 ◽  
Vol 282 (1806) ◽  
pp. 20142422 ◽  
Author(s):  
S. Eryn McFarlane ◽  
Jamieson C. Gorrell ◽  
David W. Coltman ◽  
Murray M. Humphries ◽  
Stan Boutin ◽  
...  

Genetic variation in fitness is required for the adaptive evolution of any trait but natural selection is thought to erode genetic variance in fitness. This paradox has motivated the search for mechanisms that might maintain a population's adaptive potential. Mothers make many contributions to the attributes of their developing offspring and these maternal effects can influence responses to natural selection if maternal effects are themselves heritable. Maternal genetic effects (MGEs) on fitness might, therefore, represent an underappreciated source of adaptive potential in wild populations. Here we used two decades of data from a pedigreed wild population of North American red squirrels to show that MGEs on offspring fitness increased the population's evolvability by over two orders of magnitude relative to expectations from direct genetic effects alone. MGEs are predicted to maintain more variation than direct genetic effects in the face of selection, but we also found evidence of maternal effect trade-offs. Mothers that raised high-fitness offspring in one environment raised low-fitness offspring in another environment. Such a fitness trade-off is expected to maintain maternal genetic variation in fitness, which provided additional capacity for adaptive evolution beyond that provided by direct genetic effects on fitness.


2021 ◽  
Author(s):  
Donal Hickey ◽  
Brian Golding

Abstract BackgroundNatural populations harbor significant levels of genetic variability. Because of this standing genetic variation, the number of possible genotypic combinations is many orders of magnitude greater than the population size. This means that any given population contains only a tiny fraction of all possible genotypic combinations.ResultsWe show that recombination allows a finite population to resample the genotype pool, i.e., the universe of all possible genotypic combinations. Recombination, in combination with natural selection, enables an evolving sexual population to replace existing genotypes with new, higher-fitness genotypic combinations that did not previously exist in the population. Gradually the selected sexual population approaches a state where the optimum genotype is produced by recombination and where it rises to fixation. In contrast to this, an asexual population is limited to selection among existing lower fitness genotypes.ConclusionsThe significance of the result is two-fold. First, it provides an explanation for the ubiquity of sexual reproduction in evolving populations. Secondly, it shows that recombination serves to remove concerns about the cost of natural selection acting on the naturally occurring standing genetic variation. This means that classic population genetics theory is applicable to ecological studies of natural selection acting on standing genetic variation.


2015 ◽  
Vol 5 (3) ◽  
pp. 329-339 ◽  
Author(s):  
Susan M Rottschaefer ◽  
Jacob E Crawford ◽  
Michelle M Riehle ◽  
Wamdaogo M Guelbeogo ◽  
Awa Gneme ◽  
...  

Abstract Natural selection is expected to drive adaptive evolution in genes involved in host–pathogen interactions. In this study, we use molecular population genetic analyses to understand how natural selection operates on the immune system of Anopheles coluzzii (formerly A. gambiae “M form”). We analyzed patterns of intraspecific and interspecific genetic variation in 20 immune-related genes and 17 nonimmune genes from a wild population of A. coluzzii and asked if patterns of genetic variation in the immune genes are consistent with pathogen-driven selection shaping the evolution of defense. We found evidence of a balanced polymorphism in CTLMA2, which encodes a C-type lectin involved in regulation of the melanization response. The two CTLMA2 haplotypes, which are distinguished by fixed amino acid differences near the predicted peptide cleavage site, are also segregating in the sister species A. gambiae (“S form”) and A. arabiensis. Comparison of the two haplotypes between species indicates that they were not shared among the species through introgression, but rather that they arose before the species divergence and have been adaptively maintained as a balanced polymorphism in all three species. We additionally found that STAT-B, a retroduplicate of STAT-A, shows strong evidence of adaptive evolution that is consistent with neofunctionalization after duplication. In contrast to the striking patterns of adaptive evolution observed in these Anopheles-specific immune genes, we found no evidence of adaptive evolution in the Toll and Imd innate immune pathways that are orthologously conserved throughout insects. Genes encoding the Imd pathway exhibit high rates of amino acid divergence between Anopheles species but also display elevated amino acid diversity that is consistent with relaxed purifying selection. These results indicate that adaptive coevolution between A. coluzzii and its pathogens is more likely to involve novel or lineage-specific molecular mechanisms than the canonical humoral immune pathways.


2013 ◽  
Vol 368 (1610) ◽  
pp. 20120080 ◽  
Author(s):  
Graham Bell

Populations subject to severe stress may be rescued by natural selection, but its operation is restricted by ecological and genetic constraints. The cost of natural selection expresses the limited capacity of a population to sustain the load of mortality or sterility required for effective selection. Genostasis expresses the lack of variation that prevents many populations from adapting to stress. While the role of relative fitness in adaptation is well understood, evolutionary rescue emphasizes the need to recognize explicitly the importance of absolute fitness. Permanent adaptation requires a range of genetic variation in absolute fitness that is broad enough to provide a few extreme types capable of sustained growth under a stress that would cause extinction if they were not present. This principle implies that population size is an important determinant of rescue. The overall number of individuals exposed to selection will be greater when the population declines gradually under a constant stress, or is progressively challenged by gradually increasing stress. In gradually deteriorating environments, survival at lethal stress may be procured by prior adaptation to sublethal stress through genetic correlation. Neither the standing genetic variation of small populations nor the mutation supply of large populations, however, may be sufficient to provide evolutionary rescue for most populations.


2021 ◽  
Vol 288 (1944) ◽  
pp. 20203094
Author(s):  
David Berger ◽  
Josefine Stångberg ◽  
Julian Baur ◽  
Richard J. Walters

Adaptation in new environments depends on the amount of genetic variation available for evolution, and the efficacy by which natural selection discriminates among this variation. However, whether some ecological factors reveal more genetic variation, or impose stronger selection pressures than others, is typically not known. Here, we apply the enzyme kinetic theory to show that rising global temperatures are predicted to intensify natural selection throughout the genome by increasing the effects of DNA sequence variation on protein stability. We test this prediction by (i) estimating temperature-dependent fitness effects of induced mutations in seed beetles adapted to ancestral or elevated temperature, and (ii) calculate 100 paired selection estimates on mutations in benign versus stressful environments from unicellular and multicellular organisms. Environmental stress per se did not increase mean selection on de novo mutation, suggesting that the cost of adaptation does not generally increase in new ecological settings to which the organism is maladapted. However, elevated temperature increased the mean strength of selection on genome-wide polymorphism, signified by increases in both mutation load and mutational variance in fitness. These results have important implications for genetic diversity gradients and the rate and repeatability of evolution under climate change.


1992 ◽  
Vol 6 ◽  
pp. 292-292
Author(s):  
Robert Titus

Species populations commonly carry a great deal of genetic variation which is not expressed in individual phenotypes. Cryptic variation can be carried in recessive alleles, in cases of heterosis, or where modifier genes inhibit expression of the hidden trait. Other genetic and ecological factors also allow cryptic variation. Stabilizing selection prevents the expression of hidden traits; normalizing selection weeds out the deviants and canalizing selection suppresses their traits. Together the two keep the species near the top of the adaptive peak. Cryptic variation balances a species' need to be well-adapted to its environment and also for it to maintain a reserve of variation for potential environmental change. Expression of cryptic traits is rare and is usually associated with times of greatly reduced natural selection and rapid population growth, when the lower slopes of the adaptive peak are exposed.A possible example of the manifestation of cryptic traits occurs within the lower Trentonian Rafinesquina lineage of New York State. The two most commonly reported species of the genus have been reappraised in terms of cryptic variation. Extensive collections of Rafinesquina “lennoxensis” reveal far more intergrading morphotypes than had hitherto been recognized. The form which Salmon (1942) described is broadly U-shaped with sulcate margins. It grades into very convex forms as well as sharply-defined or convexly geniculate types. Of great importance, all forms grade into the flat, U-shaped, alate R. trentonensis, which is, by far, the most common and widespread lower Trentonian member of the genus. The R. “lennoxensis” assemblage has a very narrow biostratigraphy, being confined to a few locations in the upper Napanee Limestone. This places it in a quiet, protected, low stress, lagoonal setting behind the barrier shoal facies of the Kings Falls Limestone.The R. “lennoxensis” assemblage does not constitute a natural biologic species; it is reinterpreted as an assemblage of phenodeviants occupying a low stress, low natural selection lagoon facies. All such forms should be included within R. trentonensis. Given the evolutionary plasticity of this genus, extensive cryptic variation is not surprising.


2008 ◽  
Vol 5 (1) ◽  
pp. 44-46 ◽  
Author(s):  
John F.Y Brookfield

The concept of ‘evolvability’ is increasingly coming to dominate considerations of evolutionary change. There are, however, a number of different interpretations that have been put on the idea of evolvability, differing in the time scales over which the concept is applied. For some, evolvability characterizes the potential for future adaptive mutation and evolution. Others use evolvability to capture the nature of genetic variation as it exists in populations, particularly in terms of the genetic covariances between traits. In the latter use of the term, the applicability of the idea of evolvability as a measure of population's capacity to respond to natural selection rests on one, but not the only, view of the way in which we should envisage the process of natural selection. Perhaps the most potentially confusing aspects of the concept of evolvability are seen in the relationship between evolvability and robustness.


2012 ◽  
Vol 279 (1749) ◽  
pp. 5024-5028 ◽  
Author(s):  
Jacek Radwan ◽  
Wiesław Babik

The amount and nature of genetic variation available to natural selection affect the rate, course and outcome of evolution. Consequently, the study of the genetic basis of adaptive evolutionary change has occupied biologists for decades, but progress has been hampered by the lack of resolution and the absence of a genome-level perspective. Technological advances in recent years should now allow us to answer many long-standing questions about the nature of adaptation. The data gathered so far are beginning to challenge some widespread views of the way in which natural selection operates at the genomic level. Papers in this Special Feature of Proceedings of the Royal Society B illustrate various aspects of the broad field of adaptation genomics. This introductory article sets up a context and, on the basis of a few selected examples, discusses how genomic data can advance our understanding of the process of adaptation.


Sign in / Sign up

Export Citation Format

Share Document