population dynamic model
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 7)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 17 (3) ◽  
pp. e1009443
Author(s):  
Alexandro Rodríguez-Rojas ◽  
Desiree Y. Baeder ◽  
Paul Johnston ◽  
Roland R. Regoes ◽  
Jens Rolff

Antimicrobial peptides (AMPs) are key components of innate immune defenses. Because of the antibiotic crisis, AMPs have also come into focus as new drugs. Here, we explore whether prior exposure to sub-lethal doses of AMPs increases bacterial survival and abets the evolution of resistance. We show that Escherichia coli primed by sub-lethal doses of AMPs develop tolerance and increase persistence by producing curli or colanic acid, responses linked to biofilm formation. We develop a population dynamic model that predicts that priming delays the clearance of infections and fuels the evolution of resistance. The effects we describe should apply to many AMPs and other drugs that target the cell surface. The optimal strategy to tackle tolerant or persistent cells requires high concentrations of AMPs and fast and long-lasting expression. Our findings also offer a new understanding of non-inherited drug resistance as an adaptive response and could lead to measures that slow the evolution of resistance.


2020 ◽  
Author(s):  
Lihong Zhao ◽  
Benjamin J Ridenhour ◽  
Christopher H Remien

Understanding the evolutionary dynamics of microbial communities is a key step towards the goal of predicting and manipulating microbiomes to promote beneficial states. While interactions within microbiomes and between microbes and their environment collectively determine the community composition and population dynamics, we are often concerned with traits or functions of a microbiome that link more directly to host health. To study how traits of a microbiome are impacted by eco-evolutionary dynamics, we recast a classic resource-mediated population dynamic model into a population genetic framework which incorporates traits. The relative fitness of each group of microbes can be explicitly written in terms of population dynamic parameters, and corresponding evolutionary dynamics emerge. Using several example systems, we demonstrate how natural selection, mutation, and shifts in the environment work together to produce changes in traits over time.


2019 ◽  
Author(s):  
Alexandro Rodríguez-Rojas ◽  
Desiree Y. Baeder ◽  
Paul Johnston ◽  
Roland R. Regoes ◽  
Jens Rolff

SUMMARYAntimicrobial peptides (AMPs) are key components of innate immune defenses. Because of the antibiotic crisis, AMPs have also come into focus as new drugs. Here, we explore whether prior exposure to sublethal doses of AMPs increases bacterial survival and abets the evolution of resistance. We show that Escherichia coli primed by sublethal doses of AMPs develop tolerance and increase persistence by producing curli or colanic acid. We develop a population dynamic model that predicts that priming delays the clearance of infections and fuels the evolution of resistance. The effects we describe should apply to many AMPs and other drugs that target the cell surface. The optimal strategy to tackle tolerant or persistent cells requires high concentrations of AMPs and fast and long-lasting expression. Our findings also offer a new understanding of non-inherited drug resistance as an adaptive response and could lead to measures that slow the evolution of resistance.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3727 ◽  
Author(s):  
Liu ◽  
Wang ◽  
Wang

Demand response (DR) has been recognized as a powerful tool to relieve energy imbalance in the smart grid. Most previous works have ignored the irrational behavior of energy consumers in DR project implementation. Accordingly, in this paper, we focus on solving two questions during the execution of DR. Firstly, considering the bounded rationality of residential users, a population dynamic model is proposed to describe the decision behavior on whether to participate in the DR project, and then the evolutionary process of consumers participating in DR is analyzed. Secondly, for the DR participants, they have to compete dispatching amounts for maximal profit in a day-ahead bidding market, hence, a non-cooperative game model is proposed to describe the competition behavior, and the uniqueness of the Nash equilibrium is analyzed with mathematical proof. Then, the distributed algorithm is designed to search the evolutionary result and the Nash equilibrium. Finally, a case study is performed to show the effectiveness of the formulated models.


Author(s):  
Mahikul ◽  
White ◽  
Poovorawan ◽  
Soonthornworasiri ◽  
Sukontamarn ◽  
...  

Diabetes mellitus (DM) is rising worldwide, exacerbated by aging populations. We estimated and predicted the diabetes burden and mortality due to undiagnosed diabetes together with screening program efficacy and reporting completeness in Thailand, in the context of demographic changes. An age and sex structured dynamic model including demographic and diagnostic processes was constructed. The model was validated using a Bayesian Markov Chain Monte Carlo (MCMC) approach. The prevalence of DM was predicted to increase from 6.5% (95% credible interval: 6.3–6.7%) in 2015 to 10.69% (10.4–11.0%) in 2035, with the largest increase (72%) among 60 years or older. Out of the total DM cases in 2015, the percentage of undiagnosed DM cases was 18.2% (17.4–18.9%), with males higher than females (p-value < 0.01). The highest group with undiagnosed DM was those aged less than 39 years old, 74.2% (73.7–74.7%). The mortality of undiagnosed DM was ten-fold greater than the mortality of those with diagnosed DM. The estimated coverage of diabetes positive screening programs was ten-fold greater for elderly compared to young. The positive screening rate among females was estimated to be significantly higher than those in males. Of the diagnoses, 87.4% (87.0–87.8%) were reported. Targeting screening programs and good reporting systems will be essential to reduce the burden of disease.


2018 ◽  
Author(s):  
Uriah Daugaard ◽  
Owen Petchey ◽  
Frank Pennekamp

The potential for climate change and temperature shifts to affect community stability remains relatively unknown. One mechanism by which temperature may affect stability is by altering trophic interactions. The functional response quantifies the per capita resource consumption by the consumer as a function of resource abundance and is a suitable framework for the description of nonlinear trophic interactions. We studied the effect of temperature on a ciliate predator-prey pair (Spathidium sp. and Dexiostoma campylum) by estimating warming effects on the functional response and on the associated conversion efficiency of the predator. We recorded prey and predator dynamics over 24 hours and at three temperature levels (15, 20 and 25 C). To these data we fitted a population dynamic model including the predator functional response, such that the functional response parameters (space clearance rate, handling time, and density dependence of space clearance rate) were estimated for each temperature separately. To evaluate the ecological significance of temperature effects on the functional response parameters we simulated predator-prey population dynamics. We considered the predator-prey system to be destabilised, if the prey was driven extinct by the predator. Effects of increased temperature included a transition of the functional response from a Type III to a Type II and an increase of the conversion efficiency of the predator. The simulated population dynamics showed a destabilisation of the system with warming, with greater risk of prey extinction at higher temperatures likely caused by the transition from a Type III to a Type II functional response. Warming-induced shifts from a Type III to II are not commonly considered in modelling studies that investigate how population dynamics respond to warming. Future studies should investigate the mechanism and generality of the effect we observed and simulate temperature effects in complex food webs including shifts in the type of the functional response as well as consider the possibility of a temperature dependent conversion efficiency.


2018 ◽  
Vol 28 (12) ◽  
pp. 1830041 ◽  
Author(s):  
María Belén D’Amico ◽  
Guillermo L. Calandrini ◽  
José L. González-Andujar ◽  
Guillermo R. Chantre

Weed species present high competitive capacity, rapid adaptability and herbicide resistance, hindering their effective control across worldwide cropping regions. Since field-conducted experiments are very time-consuming and usually expensive, mathematical population-based models are valuable tools to test and develop long-term weed management programs. Within this context, the objective of this paper is to formalize analytically the possible seed bank dynamics of the Lolium rigidum, subjected to different control strategies. The first focus is on studying in detail the effects of integrating constant actions, promoting more environmentally and economically sustainable scenarios. From the same perspective, an alternative to applying time-variant programs is introduced. The proposed control guarantees that the weed population is sufficiently small or, alternatively, is kept below a given economic threshold level in a ten-year planning horizon. Furthermore, an optimization criterion is adopted for distributing necessary efficiency into diverse integrated options. Numerical simulations are included to illustrate the analytical findings.


Sign in / Sign up

Export Citation Format

Share Document