scholarly journals Datasets for calcium dynamics comparison between the whole-cell and a β-escin based perforated patch configuration in brain slices from adult mice.

Data in Brief ◽  
2021 ◽  
pp. 107494
Author(s):  
Simon Hess ◽  
Christophe Pouzat ◽  
Peter Kloppenburg
1994 ◽  
Vol 267 (4) ◽  
pp. C1152-C1159 ◽  
Author(s):  
S. Grinstein ◽  
R. Romanek ◽  
O. D. Rotstein

A number of methods have been developed to manipulate the intracellular pH (pHi) of intact cells. However, such methods are not applicable when cells are studied using the patch-clamp technique, due to the continuity of the cell interior with the recording pipette. The perfused-pipette method can be used to modify pHi in the whole cell configuration, but this approach is slow, technically demanding, and not useful in the case of the perforated-patch configuration. In this report, we introduce a simple procedure that enables the investigator to predictably and reversibly alter pHi in cells clamped in either the whole cell or perforated-patch modes. The method is based on the provision of a virtually unlimited reservoir of an intracellular H+ (equivalent) donor/acceptor system, by inclusion of large concentrations of permeable weak electrolytes in the pipette solution. This system not only provides a means for the imposition and maintenance of a chosen pHi but, by changing the external concentration of the weak electrolyte, enables the investigator to rapidly and reversibly change pHi or the transmembrane delta pH during the course of an experiment. The effectiveness of the procedure was validated in peritoneal macrophages by two methods: 1) direct measurement of pHi in single cells by fluorescence ratio determinations and 2) estimation of the reversal potential of H(+)-selective currents. The pHi clamping procedure is shown to be effective using either organic or inorganic weak bases in the whole cell configuration. In addition, because NH+4/NH3 can readily permeate the pores formed by nystatin or amphotericin, the method is also shown to apply to the perforated-patch configuration.


1998 ◽  
Vol 274 (6) ◽  
pp. H2203-H2207 ◽  
Author(s):  
Shi J. Liu ◽  
Richard H. Kennedy

α1-Adrenergic stimulation has little effect on L-type Ca2+channel current ( I Ca,L) in adult cardiac myocytes measured using conventional whole cell voltage-clamp techniques. In this study using perforated-patch techniques, we reevaluated the effect of α1-adrenergic stimulation on I Ca,L in adult rat ventricular myocytes. Action potentials and I Ca,L were examined in the presence of 1 μM nadolol, a β-adrenergic antagonist, in myocytes internally dialyzed with Na+- and K+-free solutions (Cs+ and tetraethylammonium as substitutes). Phenylephrine (PE; 30 μM) increased the action potential duration measured at 25 and 70% of repolarization by 104 and 86%, respectively. In the perforated-patch configuration, PE elicited a transient decrease followed by a ∼60% increase in I Ca,L, whereas only the transient decrease in I Ca,L was observed in myocytes when the conventional whole cell configuration was used. The PE-induced increase in I Ca,L was reversibly blocked by 1 μM prazosin, an α1-adrenergic antagonist. These results suggest that α1-adrenergic stimulation enhances cardiac I Ca,L and that obligatory intracellular mediators for this action are lost during whole cell recordings.


2012 ◽  
Vol 108 (10) ◽  
pp. 2751-2766 ◽  
Author(s):  
Kristi A. Kohlmeier ◽  
Masaru Ishibashi ◽  
Jürgen Wess ◽  
Martha E. Bickford ◽  
Christopher S. Leonard

Cholinergic neurons in the laterodorsal tegmental (LDT) and peduncolopontine tegmental (PPT) nuclei regulate reward, arousal, and sensory gating via major projections to midbrain dopamine regions, the thalamus, and pontine targets. Muscarinic acetylcholine receptors (mAChRs) on LDT neurons produce a membrane hyperpolarization and inhibit spike-evoked Ca2+ transients. Pharmacological studies suggest M2 mAChRs are involved, but the role of these and other localized mAChRs (M1--M4) has not been definitively tested. To identify the underlying receptors and to circumvent the limited receptor selectivity of available mAChR ligands, we used light- and electron-immunomicroscopy and whole cell recording with Ca2+ imaging in brain slices from knockout mice constitutively lacking either M2, M4, or both mAChRs. Immunomicroscopy findings support a role for M2 mAChRs, since cholinergic and noncholinergic LDT and pedunculopontine tegmental neurons contain M2-specific immunoreactivity. However, whole cell recording revealed that the presence of either M2 or M4 mAChRs was sufficient, and that the presence of at least one of these receptors was required for these carbachol actions. Moreover, in the absence of M2 and M4 mAChRs, carbachol elicited both direct excitation and barrages of spontaneous excitatory postsynaptic potentials (sEPSPs) in cholinergic LDT neurons mediated by M1 and/or M3 mAChRs. Focal carbachol application to surgically reduced slices suggest that local glutamatergic neurons are a source of these sEPSPs. Finally, neither direct nor indirect excitation were knockout artifacts, since each was detected in wild-type slices, although sEPSP barrages were delayed, suggesting M2 and M4 receptors normally delay excitation of glutamatergic inputs. Collectively, our findings indicate that multiple mAChRs coordinate cholinergic outflow from the LDT in an unexpectedly complex manner. An intriguing possibility is that a local circuit transforms LDT muscarinic inputs from a negative feedback signal for transient inputs into positive feedback for persistent inputs to facilitate different firing patterns across behavioral states.


2000 ◽  
Vol 83 (5) ◽  
pp. 2649-2660 ◽  
Author(s):  
C. Peter Bengtson ◽  
Peregrine B. Osborne

The ventral pallidum is a major source of output for ventral corticobasal ganglia circuits that function in translating motivationally relevant stimuli into adaptive behavioral responses. In this study, whole cell patch-clamp recordings were made from ventral pallidal neurons in brain slices from 6- to 18-day-old rats. Intracellular filling with biocytin was used to correlate the electrophysiological and morphological properties of cholinergic and noncholinergic neurons identified by choline acetyltransferase immunohistochemistry. Most cholinergic neurons had a large whole cell conductance and exhibited marked fast (i.e., anomalous) inward rectification. These cells typically did not fire spontaneously, had a hyperpolarized resting membrane potential, and also exhibited a prominent spike afterhyperpolarization (AHP) and strong spike accommodation. Noncholinergic neurons had a smaller whole cell conductance, and the majority of these cells exhibited marked time-dependent inward rectification that was due to an h-current. This current activated slowly over several hundred milliseconds at potentials more negative than −80 mV. Noncholinergic neurons fired tonically in regular or intermittent patterns, and two-thirds of the cells fired spontaneously. Depolarizing current injection in current clamp did not cause spike accommodation but markedly increased the firing frequency and in some cells also altered the pattern of firing. Spontaneous tetrodotoxin-sensitive GABAA-mediated inhibitory postsynaptic currents (IPSCs) were frequently recorded in noncholinergic neurons. These results show that cholinergic pallidal neurons have similar properties to magnocellular cholinergic neurons in other parts of the forebrain, except that they exhibit strong spike accommodation. Noncholinergic ventral pallidal neurons have large h-currents that could have a physiological role in determining the rate or pattern of firing of these cells.


Neuroglia ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 48-56
Author(s):  
Jordan N. Haidey ◽  
Grant R. Gordon

Astrocytes elicit bidirectional control of microvascular diameter in acutely isolated brain slices through vasoconstriction and vasodilation pathways that can be differentially recruited via the free Ca2+ concentration in endfeet and/or the metabolic status of the tissue. However, the Ca2+-level hypothesis has not been tested using direct manipulation. To overcome this, we used Ca2+-clamp whole-cell patching of peri-arteriole astrocytes to change astrocyte-free Ca2+ to different concentrations and examined the vascular response. We discovered that clamping Ca2+ at the approximate resting value (100 nM) had no impact on arteriole diameter in a pre-constricted arteriole. However, a moderate elevation to 250 nM elicited sustained vasodilation that was blocked by the COX-1 antagonist SC-560 (500 nM). The vasodilation to 250 nM Ca2+ was sensitive to the metabolic state, as it converted to vasoconstriction when oxygen tension was dramatically elevated. In normal oxygen, clamping astrocyte Ca2+ well above the resting level (750 nM) produced sustained vasoconstriction, which converted to vasodilation in the 20-HETE blocker HET0016 (1 μM). This response was fully blocked by the addition of SC-560 (500 nM), showing that 20-HETE-induced vasoconstriction dominated the dilatory action of COX-1. These data demonstrate that direct changes in astrocyte free Ca2+ can control multiple arteriole tone states through different mediators.


1990 ◽  
Vol 95 (3) ◽  
pp. 523-544 ◽  
Author(s):  
M T Lucero ◽  
P A Pappone

We used the "perforated-patch" technique (Horn, R., and A. Marty, 1988. Journal of General Physiology. 92:145-159) to examine the effects of adrenergic agonists on the membrane potentials and membrane currents in isolated cultured brown fat cells from neonatal rats. In contrast to our previous results using traditional whole-cell patch clamp, 1-23-d cultured brown fat cells clamped with the perforated patch consistently showed vigorous membrane responses to both alpha- and beta-adrenergic agonists, suggesting that cytoplasmic components essential for the thermogenic response are lost in whole-cell experiments. The membrane responses to adrenergic stimulation varied from cell to cell but were consistent for a given cell. Responses to bath-applied norepinephrine in voltage-clamped cells had three possible components: (a) a fast transient inward current, (b) a slower outward current carried by K+ that often oscillated in amplitude, and (c) a sustained inward current largely by Na+. The fast inward and outward currents were activated by alpha-adrenergic agonists while the slow inward current was mediated by beta-adrenergic agonists. Oscillating outward currents were the most frequently seen response to norepinephrine stimulation. Activation of this current, termed IK,NE, was independent of voltage and seemed to be carried by Ca2(+)-activated K channels since the current oscillated in amplitude at constant membrane potential and gradually decreased when the cells were bathed with calcium-free external solution. IK,NE had a novel pharmacology in that it could be blocked by 4-aminopyridine, tetraethylammonium, apamin, and charybdotoxin. Both IK,NE and the voltage-gated K channels also present in brown fat (Lucero, M. T., and P. A. Pappone, 1989a. Journal of General Physiology. 93:451-472) may play a role in maintaining cellular homeostasis in the face of the high metabolic activity involved in thermogenesis.


1999 ◽  
Vol 277 (3) ◽  
pp. R887-R893 ◽  
Author(s):  
H. S. Ghai ◽  
L. T. Buck

We tested the effect of anoxia, a “mimic” turtle artificial cerebrospinal fluid (aCSF) consisting of high Ca2+ and Mg2+ concentrations and low pH and adenosine perfusions, on whole cell conductance ( G w) in turtle brain slices using a whole cell voltage-clamp technique. With EGTA in the recording electrode, anoxic or adenosine perfusions did not change G w significantly (values range between 2.15 ± 0.24 and 3.24 ± 0.56 nS). However, perfusion with normoxic or anoxic mimic aCSF significantly decreased G w. High [Ca2+] (4.0 or 7.8 mM) perfusions alone could reproduce the changes in G w found with the mimic perfusions. With the removal of EGTA from the recording electrode, G wdecreased significantly during both anoxic and adenosine perfusions. The A1-receptor agonist N 6-cyclopentyladenosine reduced G w in a dose-dependent manner, whereas the A1-receptor specific antagonist 8-cyclopentyl-1,3-dipropylxanthine blocked both the adenosine- and anoxic-mediated changes in G w. These data suggest a mechanism involving A1-receptor-mediated changes in intracellular [Ca2+] that result in acute changes in G w with the onset of anoxia.


2003 ◽  
Vol 90 (5) ◽  
pp. 2964-2972 ◽  
Author(s):  
Roman Tyzio ◽  
Anton Ivanov ◽  
Cristophe Bernard ◽  
Gregory L. Holmes ◽  
Yehezkiel Ben-Ari ◽  
...  

A depolarized resting membrane potential has long been considered to be a universal feature of immature neurons. Despite the physiological importance, the underlying mechanisms of this developmental phenomenon are poorly understood. Using perforated-patch, whole cell, and cell-attached recordings, we measured the membrane potential in CA3 pyramidal cells in hippocampal slices from postnatal rats. With gramicidin perforated-patch recordings, membrane potential was –44 ± 4 (SE) mV at postnatal days P0–P2, and it progressively shifted to –67 ± 2 mV at P13–15. A similar developmental change of the membrane potential has been also observed with conventional whole cell recordings. However, the value of the membrane potential deduced from the reversal potential of N-methyl-d-aspartate channels in cell-attached recordings did not change with age and was –77 ± 2 mV at P2 and –77 ± 2 mV at P13–14. The membrane potential measured using whole cell recordings correlated with seal and input resistance, being most depolarized in neurons with high, several gigaohms, input resistance and low seal resistance. Simulations revealed that depolarized values of the membrane potential in whole cell and perforated-patch recordings could be explained by a shunt through the seal contact between the pipette and membrane. Thus the membrane potential of CA3 pyramidal cells appears to be strongly negative at birth and does not change during postnatal development.


Sign in / Sign up

Export Citation Format

Share Document