paralogous gene
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 12)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Terence Charles Theisen ◽  
John C. Boothroyd

Toxoplasma gondii has numerous, large, paralogous gene families that are likely critical for supporting its unparalleled host range: nearly any nucleated cell in almost any warm-blooded animal. The SRS (SAG1-related sequence) gene family encodes over 100 proteins, the most abundant of which are thought to be involved in parasite attachment and, based on their stage-specific expression, evading the host immune response. For most SRS proteins, however, little is understood about their function and expression profile. Single-parasite RNA-sequencing previously demonstrated that across an entire population of lab-grown tachyzoites, transcripts for over 70 SRS genes were detected in at least one parasite. In any one parasite, however, transcripts for an average of only 7 SRS genes were detected, two of which, SAG1 and SAG2A , were extremely abundant and detected in virtually all. These data do not address whether this pattern of sporadic SRS gene expression is consistently inherited among the progeny of a given parasite or arises independently of lineage. We hypothesized that if SRS expression signatures are stably inherited by progeny, subclones isolated from a cloned parent would be more alike in their expression signatures than they are to the offspring of another clone. In this report, we compare transcriptomes of clonally derived parasites to determine the degree to which expression of the SRS family is stably inherited in individual parasites. Our data indicate that in RH tachyzoites, SRS genes are variably expressed even between parasite samples subcloned from the same parent within approximately 10 parasite divisions (72 hours). This suggests that the pattern of sporadically expressed SRS genes is highly variable and not driven by inheritance mechanisms, at least under our conditions.


2021 ◽  
Author(s):  
Ramya Purkanti ◽  
Mukund Thattai

AbstractModules of interacting proteins regulate vesicle budding and fusion in eukaryotes. Distinct paralogous copies of these modules act at distinct sub-cellular locations. The processes by which such large gene modules are duplicated and retained remain unclear. Here we show that interspecies hybridization is a potent source of paralogous gene modules. We study the dynamics of paralog doublets derived from the 100-million-year-old hybridization event that gave rise to the whole genome duplication clade of budding yeast. We show that paralog doublets encoding vesicle traffic proteins are convergently retained across species. Vesicle coats and adaptors involved in secretory and early-endocytic pathways are retained as doublets, while tethers and other machinery involved in intra-Golgi traffic and later endocytic steps are reduced to singletons. These patterns reveal common selective pressures that have sculpted traffic pathways in diverse yeast species. They suggest that hybridization may have played a pivotal role in the expansion of the endomembrane system.


2020 ◽  
Vol 4 (1) ◽  
pp. 28-35
Author(s):  
Mitsuki OHAMA ◽  
Kenta KISHIMOTO ◽  
Masato KINOSHITA ◽  
Keitaro KATO ◽  
Youhei WASHIO

To improve livestock and aquaculture-raised fish as food, targeted mutagenesis using genome editing technologies is becoming more realizable. Myostatin (Mstn), which functions as the negative regulator of skeletal muscle growth, is one of the major targets to improve the edible ratio of livestock and farmed fish. We previously reported that the deficiency of Pm-mstn, one of Myostatin paralogs, improves muscle growth and changes body shape in a finfish species, red seabream (Pagrus major), as a result of editing the gene by means of CRISPR/Cas9. In this study, we established Pm-mstnb-deficient red seabream, which is a null-allelic mutant of another paralogous gene of Myostatin in the species, and analyzed their phenotype in terms of growth traits and body shape. A comparison of all growth traits between Pm-mstnbwt/wt and Pm-mstnb-5/-5 revealed no significant differences. In addition, all metrics for body shape, defined as the ratios of body depth, body width, and depth of the caudal peduncle to body length, respectively, were also similar in Pm-mstnbwt/wt and Pm-mstnb-5/-5. Therefore, we concluded that Pm-mstnb does not function as a negative regulator of skeletal muscle growth in red seabream.


2020 ◽  
Vol 18 (03) ◽  
pp. 2040008
Author(s):  
Gatis Melkus ◽  
Peteris Rucevskis ◽  
Edgars Celms ◽  
Kārlis Čerāns ◽  
Karlis Freivalds ◽  
...  

Current high-throughput experimental techniques make it feasible to infer gene regulatory interactions at the whole-genome level with reasonably good accuracy. Such experimentally inferred regulatory networks have become available for a number of simpler model organisms such as S. cerevisiae, and others. The availability of such networks provides an opportunity to compare gene regulatory processes at the whole genome level, and in particular, to assess similarity of regulatory interactions for homologous gene pairs either from the same or from different species. We present here a new technique for analyzing the regulatory interaction neighborhoods of paralogous gene pairs. Our central focus is the analysis of S. cerevisiae gene interaction graphs, which are of particular interest due to the ancestral whole-genome duplication (WGD) that allows to distinguish between paralogous transcription factors that are traceable to this duplication event and other paralogues. Similar analysis is also applied to E. coli and C. elegans networks. We compare paralogous gene pairs according to the presence and size of bi-fan arrays, classically associated in the literature with gene duplication, within other network motifs. We further extend this framework beyond transcription factor comparison to obtain topology-based similarity metrics based on the overlap of interaction neighborhoods applicable to most genes in a given organism. We observe that our network divergence metrics show considerably larger similarity between paralogues, especially those traceable to WGD. This is the case for both yeast and C. elegans, but not for E. coli regulatory network. While there is no obvious cross-species link between metrics, different classes of paralogues show notable differences in interaction overlap, with traceable duplications tending toward higher overlap compared to genes with shared protein families. Our findings indicate that divergence in paralogous interaction networks reflects a shared genetic origin, and that our approach may be useful for investigating structural similarity in the interaction networks of paralogous genes.


2020 ◽  
Author(s):  
Saurav Mallik ◽  
Dan S Tawfik

AbstractOligomeric proteins are central to life. Duplication and divergence of their genes is a key evolutionary driver, also because duplications can yield very different outcomes. Given a homomeric ancestor, duplication can yield two paralogs that form two distinct homomeric complexes, or a heteromeric complex comprising both paralogs. Alternatively, one paralog remains a homomer while the other acquires a new partner. However, so far, conflicting trends have been noted with respect to which fate dominates, primarily because different methods and criteria are being used to assign the interaction status of paralogs. Here, we systematically analyzed all Saccharomyces cerevisiae and Escherichia coli oligomeric complexes that include paralogous proteins. We found that the proportions of homo-hetero duplication fates strongly depend on a variety of factors, yet that nonetheless, rigorous filtering gives a consistent picture. In E. coli about 50%, of the paralogous pairs appear to have retained the ancestral homomeric interaction, whereas in S. cerevisiae only ∼10% retained a homomeric state. This difference was also observed when unique complexes were counted instead of paralogous gene pairs. We further show that this difference is accounted for by multiple cases of heteromeric yeast complexes that share common ancestry with homomeric bacterial complexes. Our analysis settles contradicting trends and conflicting previous analyses, and provides a systematic and rigorous pipeline for delineating the fate of duplicated oligomers in any organism for which protein-protein interaction data are available.


2019 ◽  
Vol 221 (9) ◽  
pp. 1438-1447
Author(s):  
Sandhya Bista ◽  
Preeti Singh ◽  
Quentin Bernard ◽  
Xiuli Yang ◽  
Thomas Hart ◽  
...  

Abstract Borrelia burgdorferi conserved gene products BB0406 and BB0405, members of a common B. burgdorferi paralogous gene family, share 59% similarity. Although both gene products can function as potential porins, only BB0405 is essential for infection. Here we show that, despite sequence homology and coexpression from the same operon, both proteins differ in their membrane localization attributes, antibody accessibility, and immunogenicity in mice. BB0406 is required for spirochete survival in mammalian hosts, particularly for the disseminated infection in distant organs. We identified that BB0406 interacts with laminin, one of the major constituents of the vascular basement membrane, and facilitates spirochete transmigration across host endothelial cell barriers. A better understanding of how B. burgdorferi transmigrates through dermal and tissue vascular barriers and establishes disseminated infections will contribute to the development of novel therapeutics to combat early infection.


2019 ◽  
Author(s):  
Yuxuan Chen ◽  
Han Han ◽  
Gayoung Seo ◽  
Rebecca Vargas ◽  
Bing Yang ◽  
...  

AbstractThe Hippo pathway is a central regulator of organ size and a key tumor suppressor via coordinating cell proliferation and death. Initially discovered in Drosophila, the Hippo pathway has been implicated as an evolutionarily conserved pathway in mammals; however, how this pathway was evolved to be functional from its origin is still largely unknown. In this study, we traced the Hippo pathway in premetazoan species, characterized the intrinsic functions of its ancestor components, and unveiled the evolutionary history of this key signaling pathway from its unicellular origin. In addition, we elucidated the paralogous gene history for the mammalian Hippo pathway components and characterized their cancer-derived somatic mutations from an evolutionary perspective. Taken together, our findings not only traced the conserved function of the Hippo pathway to its unicellular ancestor components, but also provided novel evolutionary insights into the Hippo pathway organization and oncogenic alteration.


Sign in / Sign up

Export Citation Format

Share Document