genome dimerization
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 5)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Redmond Smyth ◽  
Liqing Ye ◽  
Anne-Sophie Gribling ◽  
Patrick Bohn ◽  
Anuja Kibe ◽  
...  

Abstract Genome dimerization is a conserved feature of retroviral replication and a critical step in the HIV-1 life cycle, but how it is regulated is incompletely understood. Here, we developed FARS-seq (Functional Analysis of RNA Structure) to comprehensively identify sequences and structures within the HIV-1 5’UTR influencing dimerization. We found nucleotides important for dimerization throughout the HIV-1 5’UTR and identified distinct structural conformations in monomeric and dimeric RNA. The dimer displayed TAR, PolyA, PBS, and SL1-SL3 as stem-loops. In the monomer, SL1 was dramatically reconfigured into long- and short-range base-pairings with polyA and PBS, respectively. The polyA-SL1 interaction disrupts the major packaging motifs, and the PBS-SL1 interaction functionally couples the primer binding site with dimerization and Pr55Gag binding. Altogether, our data provide insights into late stages of HIV-1 life cycle and a mechanistic explanation for the link between RNA dimerization and packaging.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 903
Author(s):  
Eunice C. Chen ◽  
Rebecca J. Kaddis Maldonado ◽  
Leslie J. Parent

Retroviruses are unique in that they package their RNA genomes as non-covalently linked dimers. Failure to dimerize their genomes results in decreased infectivity and reduced packaging of genomic RNA into virus particles. Two models of retrovirus genome dimerization have been characterized: in murine leukemia virus (MLV), genomic RNA dimerization occurs co-transcriptionally in the nucleus, resulting in the preferential formation of genome homodimers; whereas in human immunodeficiency virus (HIV-1), genomic RNA dimerization occurs in the cytoplasm and at the plasma membrane, with a random distribution of heterodimers and homodimers. Although in vitro studies have identified the genomic RNA sequences that facilitate dimerization in Rous sarcoma virus (RSV), in vivo characterization of the location and preferences of genome dimerization has not been performed. In this study, we utilized three single molecule RNA imaging approaches to visualize genome dimers of RSV in cultured quail fibroblasts. The formation of genomic RNA heterodimers within cells was dependent on the presence of the dimerization initiation site (DIS) sequence in the L3 stem. Subcellular localization analysis revealed that heterodimers were present the nucleus, cytoplasm, and at the plasma membrane, indicating that genome dimers can form in the nucleus. Furthermore, single virion analysis revealed that RSV preferentially packages genome homodimers into virus particles. Therefore, the mechanism of RSV genomic RNA dimer formation appears more similar to MLV than HIV-1.


2021 ◽  
Vol 22 (7) ◽  
pp. 3435
Author(s):  
Sayuri Sakuragi ◽  
Osamu Kotani ◽  
Masaru Yokoyama ◽  
Tatsuo Shioda ◽  
Hironori Sato ◽  
...  

Human immunodeficiency virus type 1 (HIV-1) uptakes homo-dimerized viral RNA genome into its own particle. A cis-acting viral RNA segment responsible for this event, termed packaging signal (psi), is located at the 5′-end of the viral genome. Although the psi segment exhibits nucleotide variation in nature, its effects on the psi function largely remain unknown. Here we show that a psi sequence from an HIV-1 regional variant, subtype D, has a lower packaging ability compared with that from another regional variant, HIV-1 subtype B, despite maintaining similar genome dimerization activities. A series of molecular genetic investigations narrowed down the responsible element of the selective attenuation to the two sequential nucleotides at positions 226 and 227 in the psi segment. Molecular dynamics simulations predicted that the dinucleotide substitution alters structural dynamics, fold, and hydrogen-bond networks primarily of the psi-SL2 element that contains the binding interface of viral nucleocapsid protein for the genome packaging. In contrast, such structural changes were minimal within the SL1 element involved in genome dimerization. These results suggest that the psi 226/227 dinucleotide pair functions as a cis-acting regulator to control the psi structure to selectively tune the efficiency of packaging, but not dimerization of highly variable HIV-1 genomes.


2020 ◽  
Author(s):  
Joshua A. Imperatore ◽  
Caylee L. Cunningham ◽  
Kendy A. Pellegrene ◽  
Robert G. Brinson ◽  
John P. Marino ◽  
...  

ABSTRACTThe ongoing COVID-19 pandemic highlights the necessity for a more fundamental understanding of the coronavirus life cycle. The causative agent of the disease, SARS-CoV-2, is being studied extensively from a structural standpoint in order to gain insight into key molecular mechanisms required for its survival. Contained within the untranslated regions of the SARS-CoV-2 genome are various conserved stem-loop elements that are believed to function in RNA replication, viral protein translation, and discontinuous transcription. While the majority of these regions are variable in sequence, a 41-nucleotide s2m element within the 3’ UTR is highly conserved among coronaviruses and three other viral families. In this study, we demonstrate that the s2m element of SARS-CoV-2 dimerizes by forming an intermediate homodimeric kissing complex structure that is subsequently converted to a thermodynamically stable duplex conformation. This process is aided by the viral nucleocapsid protein, potentially indicating a role in mediating genome dimerization. Furthermore, we demonstrate that the s2m element interacts with multiple copies of host cellular miRNA-1307-3p. Taken together, our results highlight the potential significance of the dimer structures formed by the s2m element in key biological processes and implicate the motif as a possible therapeutic drug target for COVID-19 and other coronavirus-related diseases.


2019 ◽  
Vol 116 (21) ◽  
pp. 10372-10381 ◽  
Author(s):  
Benjamin S. Brigham ◽  
Jonathan P. Kitzrow ◽  
Joshua-Paolo C. Reyes ◽  
Karin Musier-Forsyth ◽  
James B. Munro

The highly conserved 5′ untranslated region (5′UTR) of the HIV-1 RNA genome is central to the regulation of virus replication. NMR and biochemical experiments support a model in which the 5′UTR can transition between at least two conformational states. In one state the genome remains a monomer, as the palindromic dimerization initiation site (DIS) is sequestered via base pairing to upstream sequences. In the second state, the DIS is exposed, and the genome is competent for kissing loop dimerization and packaging into assembling virions where an extended dimer is formed. According to this model the conformation of the 5′UTR determines the fate of the genome. In this work, the dynamics of this proposed conformational switch and the factors that regulate it were probed using multiple single-molecule and in-gel ensemble FRET assays. Our results show that the HIV-1 5′UTR intrinsically samples conformations that are stabilized by both viral and host factor binding. Annealing of tRNALys3, the primer for initiation of reverse transcription, can promote the kissing dimer but not the extended dimer. In contrast, HIV-1 nucleocapsid (NC) promotes formation of the extended dimer in both the absence and presence of tRNALys3. Our data are consistent with an ordered series of events that involves primer annealing, genome dimerization, and virion assembly.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Cristina Romero-López ◽  
Alicia Barroso-delJesus ◽  
Alfredo Berzal-Herranz

2016 ◽  
Vol 113 (46) ◽  
pp. 13033-13038 ◽  
Author(s):  
Sarah C. Keane ◽  
Verna Van ◽  
Heather M. Frank ◽  
Carly A. Sciandra ◽  
Sayo McCowin ◽  
...  

HIV type-1 (HIV-1) contains a pseudodiploid RNA genome that is selected for packaging and maintained in virions as a noncovalently linked dimer. Genome dimerization is mediated by conserved elements within the 5′-leader of the RNA, including a palindromic dimer initiation signal (DIS) that has been proposed to form kissing hairpin and/or extended duplex intermolecular contacts. Here, we have applied a2H-edited NMR approach to directly probe for intermolecular interactions in the full-length, dimeric HIV-1 5′-leader (688 nucleotides; 230 kDa). The interface is extensive and includes DIS:DIS base pairing in an extended duplex state as well as intermolecular pairing between elements of the upstream Unique-5′ (U5) sequence and those near thegagstart site (AUG). Other pseudopalindromic regions of the leader, including the transcription activation (TAR), polyadenylation (PolyA), and primer binding (PBS) elements, do not participate in intermolecular base pairing. Using a2H-edited one-dimensional NMR approach, we also show that the extended interface structure forms on a time scale similar to that of overall RNA dimerization. Our studies indicate that a kissing dimer-mediated structure, if formed, exists only transiently and readily converts to the extended interface structure, even in the absence of the HIV-1 nucleocapsid protein or other RNA chaperones.


Retrovirology ◽  
2015 ◽  
Vol 12 (1) ◽  
Author(s):  
Thao Tran ◽  
Yuanyuan Liu ◽  
Jan Marchant ◽  
Sarah Monti ◽  
Michelle Seu ◽  
...  
Keyword(s):  

RNA ◽  
2013 ◽  
Vol 19 (12) ◽  
pp. 1648-1658 ◽  
Author(s):  
S. J. Aktar ◽  
A. Jabeen ◽  
L. M. Ali ◽  
V. Vivet-Boudou ◽  
R. Marquet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document