scholarly journals The effect of sediments on the dynamics and accretionary style of subduction margins

2021 ◽  
Author(s):  
Adina E. Pusok ◽  
Dave R. Stegman ◽  
Madeleine Kerr

Abstract. Subduction zones represent the only major pathway by which continental material can be returned to the Earth's mantle. Constraining the sediments mass flux through subduction zones is important to the understanding of both petrogenesis of continental crust, and the recycling of volatiles and continental material back into the mantle over long periods of geologic time. When sediments are considered, convergent margins appear to fall into one of two classes: accretionary and erosive. Accretionary margins are dominated by accretion of thick piles of sediments (> 1 km) from the subducting plate, while tectonic erosion is favored in regions where the sedimentary cover is < 1 km. However, as data help define geometry of the global subduction system, the consequences of the two styles of margins on subduction dynamics remain poorly resolved. In this study, we run systematic 2-D numerical simulations of subduction to investigate how sediment fluxes influence subduction dynamics and plate coupling. We vary the thickness and viscosity of the sediment layer entering subduction, the thickness of the upper plate, and the driving velocity of the subducting plate (i.e., kinematic boundary conditions). Our results show three modes of subduction interface: a) Tectonic erosion margin (high viscosity sediment layer), b) Low angle accretionary wedge margin (low viscosity, thin sediment layer), and c) High angle accretionary wedge margin (low viscosity, thick sediment layer). We find that the properties of the sediment layer modulate the extent of viscous coupling at the interface between the subducting and overriding plates. When the viscous coupling is increased, an erosive style margin will be favored over an accretionary style. On the other hand, when the viscous coupling is reduced, sediments are scrapped-off the subducting slab to form an accretionary wedge. Diagnostic parameters are extracted automatically from numerical simulations to analyze the dynamics and differentiate between these modes of subduction margin. Models of tectonic erosion margins show small radii of curvature, slow convergence rates and thin subduction interfaces, while results of accretionary margins show large radii of curvature, faster convergence rates and dynamic accretionary wedges. These diagnostics parameters are then linked with observations of present-day subduction zones.

2020 ◽  
Author(s):  
Whitney Behr ◽  
Adam Holt ◽  
Thorsten Becker ◽  
Claudio Faccenna

&lt;p&gt;Tectonic plate velocities predominantly result from a balance between the potential energy change of the subducting slab and viscous dissipation in the mantle, bending lithosphere, and slab&amp;#8211;upper plate interface. A range of observations suggest that slabs may be weak, implying a more prominent role for plate interface dissipation than previously thought. Behr &amp; Becker (2018) suggested that the deep interface viscosity in subduction zones should be strongly affected by the relative proportions of sedimentary to mafic rocks that are subducted to depth, and that sediment subduction should thus facilitate faster subduction plate speeds. Here we use fully dynamic 2D subduction models built with the code ASPECT to quantitatively explore how subduction interface viscosity influences: a) subducting plate sinking velocities, b) trench migration rates, c) convergence velocities, d) upper plate strain regimes, e) dynamic topography, and f) interactions with the 660 km mantle transition zone.&amp;#160; We implement two main types of models, including 1) uniform interface models where interface viscosity and slab strength are systematically varied, and 2) varying interface models where a low viscosity sediment strip of finite width is embedded within a higher viscosity interface. Uniform interface models indicate that low viscosity (sediment-lubricated) slabs have substantially faster sinking velocities prior to reaching the 660, especially for weak slabs, and also that they achieve faster &amp;#8216;steady state&amp;#8217; velocities after 660 penetration. Even models where sediments are limited to a strip on the seafloor show accelerations in convergence rates of up to ~5 mm/y per my, with convergence initially accommodated by trench rollback and later by slab sinking. We discuss these results in the context of well-documented plate accelerations in Earth&amp;#8217;s history such as India-Asia convergence and convergence rate oscillations along the Andean margin.&lt;/p&gt;&lt;p&gt;References: Behr, W. M., &amp; Becker, T. W. (2018). Sediment control on subduction plate speeds. &lt;em&gt;Earth and Planetary Science Letters&lt;/em&gt;,&amp;#160;&lt;em&gt;502&lt;/em&gt;, 166-173.&lt;/p&gt;


Author(s):  
Stefano Tavani ◽  
Pablo Granado ◽  
Amerigo Corradetti ◽  
Giovanni Camanni ◽  
Gianluca Vignaroli ◽  
...  

In accretionary convergent margins, the subduction interface is formed by a lower plate décollement above which sediments are scraped off and incorporated into the accretionary wedge. During subduction, the basal décollement is typically located within or at the base of the sedimentary pile. However, the transition to collision implies the accretion of the lower plate continental crust and deformation of its inherited rifted margin architecture. During this stage, the basal décollement may remain confined to shallow structural levels as during subduction or re-localize into the lower plate middle-lower crust. Modes and timing of such re-localization are still poorly understood. We present cases from the Zagros, Apennines, Oman, and Taiwan belts, all of which involve a former rifted margin and point to a marked influence of inherited rift-related structures on the décollement re-localization. A deep décollement level occurs in the outer sectors of all of these belts, i.e., in the zone involving the proximal domain of pre-orogenic rift systems. Older—and shallower—décollement levels are preserved in the upper and inner zones of the tectonic pile, which include the base of the sedimentary cover of the distal portions of the former rifted margins. We propose that thinning of the ductile middle crust in the necking domains during rifting, and its complete removal in the hyperextended domains, hampered the development of deep-seated décollements during the inception of shortening. Progressive orogenic involvement of the proximal rift domains, where the ductile middle crust was preserved upon rifting, favors its reactivation as a décollement in the frontal portion of the thrust system. Such décollement eventually links to the main subduction interface, favoring underplating and the upward motion of internal metamorphic units, leading to their final emplacement onto the previously developed tectonic stack.


Soft Matter ◽  
2020 ◽  
Vol 16 (11) ◽  
pp. 2854-2863 ◽  
Author(s):  
Francesco De Vita ◽  
Marco Edoardo Rosti ◽  
Sergio Caserta ◽  
Luca Brandt

Emulsion under shear flow can exhibit banded structures at low viscosity ratio. When coalescence is favoured, it can stabilize bands generated by migration of droplets. The reduction of the total surface results in a lower effective viscosity state.


2019 ◽  
Author(s):  
Thomas M. Belgrano ◽  
Larryn W. Diamond ◽  
Yves Vogt ◽  
Andrea R. Biedermann ◽  
Samuel A. Gilgen ◽  
...  

Abstract. Recent studies have revealed genetic similarities between Tethyan ophiolites and oceanic proto-arc sequences formed above nascent subduction zones. The Semail ophiolite (Oman–U.A.E.) in particular can be viewed as an analogue for this proto-arc crust. Though proto-arc magmatism and the mechanisms of subduction-initiation are of great interest, insight is difficult to gain from drilling and limited surface outcrops in submarine fore-arcs. In contrast, the Semail ophiolite, in which the 3–5 km thick upper-crustal succession is exposed in an oblique cross-section, presents an opportunity to assess the architecture and volumes of different volcanic rocks that form during the protoarc stage. To determine the distribution of the volcanic rocks and to aid exploration for the volcanogenic massive sulphide (VMS) deposits that they host, we have re-mapped the volcanic units of the Semail ophiolite by integrating new field observations, geochemical analyses and geophysical interpretations with pre-existing geological maps. By linking the major element compositions of the volcanic units to rock magnetic properties, we were able to use aeromagnetic data to infer the extension of each outcropping unit below sedimentary cover, resulting in in a new map showing 2100 km2 of upper-crustal bedrock. Whereas earlier maps distinguished two main volcanostratigraphic units, we have distinguished four, recording the progression from early spreading-axis basalts (Geotimes) through to axial to off-axial depleted basalts (Lasail), to post-axial tholeiites (Tholeiitic Alley) and finally boninites (Boninitic Alley). Geotimes (Phase 1) axial dykes and lavas make up ~55 vol% of the Semail upper crust, whereas post-axial (Phase 2) lavas constitute the remaining ~ 45 vol % and ubiquitously cover the underlying axial crust. The Semail boninites occur as discontinuous accumulations up to 2 km thick at the top of the sequence and constitute ~ 15 vol % of the upper crust. The new map provides a basis for targeted exploration of the gold-bearing VMS deposits hosted by these boninites. The thickest boninite accumulations occur in the Fizh block, where magma ascent occurred along crustal-scale faults that are connected to shear zones in the underlying mantle rocks, which in turn are associated with economic chromitite deposits. Locating major boninite feeder zones may thus be an indirect means to explore for chromitites in the underlying mantle.


The uplift of high- P -low- T metamorphic rocks has been attributed to buoyancy, diapirism, or hydrodynamically driven return flow. Buoyancy forces can return material subducted into the mantle only if subduction slows or ceases, reducing the downward traction. The buoyancy forces will be reversed within the crust, because of the increased density of high- P assemblages, and therefore can not cause the subducted material to rise beyond the base of the crust. Diapirism and hydrodynamic flow processes require a low-density, low-viscosity matrix, and can only explain the emplacement of relatively small bodies of high- P rock entrained in the flowing material. The tectonic setting of coherent regional high- P —low- T terrains can be explained in terms of the mechanical behaviour of an accretionary wedge with negligible yield strength, where underplating is the dominant mode of accretion. Underplating thickens the wedge from beneath and increases its surface slope. This causes the upper part of the wedge to extend horizontally, even though convergence is continuing. Continued underplating beneath and extension above can allow the oldest high- P rocks to rise to within reach of a moderate amount of erosion on a time scale of the order of 10 Ma. As long as subduction continues beneath the wedge, the geothermal gradient will not relax to a normal value. This process explains (a) the evidence that high- P -low- T rocks are commonly uplifted while convergence is continuing; (b) the absence in many cases of significant overprinting by higher- T assemblages; (c) the position of the oldest and highest pressure rocks in the upper rear of orogenic wedges; (d) the lack of adequate tectonic thicknesses of overlying rock to explain the metamorphism; and (e) the common occurrence of post-metamorphic faults that excise parts of the metamorphic zonation.


2020 ◽  
Author(s):  
Carla Tiraboschi ◽  
Carmen Sanchez-Valle

&lt;p&gt;In subduction zones, aqueous fluids derived from devolatilization processes of the oceanic lithosphere and its sedimentary cover, are major vectors of mass transfer from the slab to the mantle wedge and contribute to the recycling of elements and to their geochemical cycles. In this setting, assessing the mobility of redox sensitive elements, such as iron, can provide useful insights on the oxygen fugacity conditions of slab-derived fluid. However, the amount of iron mobilized by deep aqueous fluids and melts, is still poorly constrained.&lt;/p&gt;&lt;p&gt;We experimentally investigate the solubility of magnetite-hematite assemblages in water-saturated haplogranitic liquids, which represent the felsic melt produced by subducted eclogites. Experiments were conducted at 1 GPa and temperature ranging from 700 to 900 &amp;#176;C employing a piston cylinder apparatus. Single gold capsules were loaded with natural hematite, magnetite and synthetic haplogranite (Na&lt;sub&gt;0.56&lt;/sub&gt;K&lt;sub&gt;0.38&lt;/sub&gt;Al&lt;sub&gt;0.95&lt;/sub&gt;Si&lt;sub&gt;5.19&lt;/sub&gt;O&lt;sub&gt;12.2&lt;/sub&gt;). Two sets of experiments were conducted: one with H&lt;sub&gt;2&lt;/sub&gt;O-only fluids and the second one adding a 1.5 m H&lt;sub&gt;2&lt;/sub&gt;O&amp;#8211;NaCl solution. The capsule was kept frozen during welding to ensure no water loss.&amp;#160;After quench, the presence of H&lt;sub&gt;2&lt;/sub&gt;O in the quenched haplogranite glass was checked by Raman spectroscopy, while major elements were determined by microprobe analysis.&lt;/p&gt;&lt;p&gt;Preliminary results indicate that a significant amount of Fe is released from magnetite and hematite in hydrous melts, even at relatively low-pressure conditions. At 1 GPa the FeO&lt;sub&gt;tot&lt;/sub&gt; quenched in the haplogranite glass ranges from 0.60 wt% at 700 &amp;#176;C, to 1.87 wt% at 900 &amp;#176;C. In the presence of NaCl, we observed an increase in the amount of iron quenched in the glass (e.g., at 800 &amp;#176;C from 1.04 wt% to 1.56 wt% of FeO&lt;sub&gt;tot&lt;/sub&gt;).&amp;#160;Our results suggest that hydrous melts can effectively mobilize iron even at low-pressure conditions and represent a valid agent for the cycling of iron from the subducting slab to the mantle wedge.&lt;/p&gt;


2020 ◽  
Author(s):  
Nicolò Bertone ◽  
Lorenzo Bonini ◽  
Roberto Basili ◽  
Anna Del Ben ◽  
Francesco Emanuele Maesano ◽  
...  

&lt;p&gt;Tear faults are common structures in subduction zones, especially at slab edges, where they origin from differential forces applied to a subducting slab in areas close to the trench. Presence and geometry of tears have been sometimes inferred from bathymetric features, suggesting the abrupt lateral termination of the subduction zone.&lt;/p&gt;&lt;p&gt;Differential forces acting at the subduction boundaries can be related to different mechanisms, such as slab retreat, differential velocities along plate margins, complex mantle flow, differential lateral rheology. As a result, plates down-warp and tear in a scissor-like motion, with both strike-slip and dip-slip kinematics.&lt;/p&gt;&lt;p&gt;The goal of this work is to gain insights into the evolution of tear faults by adopting an analogue modelling approach and comparing the results with natural cases. In particular, we focus on the bathymetric observation made in subduction zones where the upper plate accretionary wedge is not well developed. Two scenarios were considered: 1) tear faults nucleating and evolving in a homogeneous setting, i.e. without large mechanical discontinuities (e.g., Tonga subduction zone); and 2) tear faults reactivating pre-existing strike-slip faults as an analogue of transform faults (e.g., South Sandwich subduction zone).&lt;/p&gt;&lt;p&gt;The experimental apparatus was designed to reproduce the lateral propagation of a tear fault using two blocks: one entirely flat and the other with an inclined plane. Wet kaolin acts as the analogue of the intact rocks above a propagating tear fault.&lt;/p&gt;&lt;p&gt;Our results revealed different evolutionary processes: in the homogeneous setting, the tear fault generates a symmetric subsidence zone with an axis perpendicular to the fault zone and a depocenter located in the centre; in the second case, the depocenter is located in front of the fault plane and the subsidence zone is asymmetric. Both cases depict a symmetrical Gaussian shape of the displacement profile, with the maximum displacement located at the centre of the fault. However, the maximum slip (D&lt;sub&gt;max&lt;/sub&gt;) and the fault length (L)&amp;#160; are both larger in the experiment involving a strong re-activation of the strike-slip fault than those in the case of the homogeneous setting.&lt;/p&gt;


1991 ◽  
Vol 28 (4) ◽  
pp. 542-556 ◽  
Author(s):  
A. J. Calvert ◽  
R. M. Clowes

Multichannel deep seismic reflection data from the subduction zone of western Canada delineate the wedge of accereted sediments and the principal terranes (Crescent, Pacific Rim, and Wrangellia) that form the convergent margin. The top of the igneous oceanic crust is defined by subhorizontal reflections extending at least 100 km landward of the deformation front. Upon incorporation into the accretionary wedge, the clearly defined stratigraphy of the incoming oceanic sedimentary section is destroyed over a distance of about 10 km. Initially, an unreflective zone, which correlates well with maximum fluid expulsion, is formed. Farther landward, a predominantly landward-dipping reflectivity exists. A number of reflections are thrust faults, which appear to merge at depth with the subhorizontal reflections, but most have another origin. These reflections may be related to the movement of fluids generated by the compaction of sediments or possibly by the dehydration of the subducting plate. They are strongest in a region of depressed seismic velocities beneath the continental slope, where an analysis of reflection amplitude with offset implies that a high Poisson's ratio exists; this is consistent with the presence of elevated pore pressures. Thus, pore pressure variations associated with the migration of fluids may be the cause of much of the reflectivity within the accreted wedge, although the precipitation of minerals from rising fluids could also be important. Evidence from the seismic data also indicates that fluids from the accretionary prism are being expelled into the sediments of the overlying Tofino basin. A number of anomalously strong reflections and disruption of the horizontally stratified sediments within the lower levels of the basin probably represent fluids that migrated upward from the accreted wedge and were trapped against impermeable barriers created through the deposition of sediments on the continental slope and in the basin.


2021 ◽  
Author(s):  
Attila Balazs ◽  
Claudio Faccenna ◽  
Taras Gerya ◽  
Kosuke Ueda ◽  
Francesca Funiciello

&lt;p&gt;The dynamics of oceanic and continental subduction zones is linked to the rise and demise of forearc and backarc basins in the overriding plate. Subsidence and uplift rates of these distinct sedimentary basins are controlled by variations in plate convergence and subduction velocities and determined by lithospheric rheological structure and different lithospheric thicknesses.&lt;/p&gt;&lt;p&gt;In this study we conducted a series of high-resolution 2D numerical models applying the thermo-mechanical code 2DELVIS (Gerya and Yuen, 2007). The model, based on finite differences and marker-in-cell techniques, solves the mass, momentum, and energy conservation equations for incompressible media; assumes elasto-visco-plastic rheologies and involves erosion, sedimentation and hydration processes.&lt;/p&gt;&lt;p&gt;The models show the evolution of wedge-top basins lying on top of the accretionary wedge and retro-forearc basins in the continental overriding plate, separated by a forearc high. These forearc regions are affected by repeated compression and extension phases. Higher subsidence rates are recorded in the syncline structure of the retro-forearc basin when the slab dip angle is higher and the subduction interface is stronger and before the slab reaches the 660 km discontinuity. This implies the importance of the slab suction force as the main forcing factor creating up to 3-4 km negative dynamics topographic signals.&lt;/p&gt;&lt;p&gt;Extensional back-arc basins are either localized along inherited crustal or lithospheric weak zones at large distance from the forearc region or are initiated just above the hydrated mantle wedge. During trench retreat and slab roll-back the older volcanic arc area becomes part of the back-arc region. Back-arc subsidence is primarily governed by crustal and lithospheric thinning controlled by slab roll-back. Onset of continental subduction and soft collision is linked to the rapid uplift of the forearc basins; however, the back-arc region records ongoing extension. Finally, during hard collision the forarc and back-arc basins are ultimately under compression.&lt;/p&gt;&lt;p&gt;Our results are compared with the evolution of the Mediterranean and based on the reconstructed plate kinematics, subsidence and heat flow evolution we classify the Western and Eastern Alboran, Paola and Tyrrhenian, Transylvanian and Pannonian Basins to be genetically similar forearc&amp;#8211;backarc basins, respectively.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document